

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

NAAC Accredited-2015, 'B' Grade (CGPA 2.62)

Name of the Faculty: Science & Technology

CHOICE BASED CREDIT SYSTEM

Syllabus: MACHANICAL ENGINEERING

Name of the Course: S.Y. B. Tech. (Sem.- III & IV)

(Syllabus to be implemented from June, 2019)

Faculty of Engineering & Technology

Credit System structure of S.Y. B. Tech. Mechanical Engineering W.E.F. 2019-20

Semester 3

Theory Courses

Course code	Name of Theory Course	Hrs./week				Credits	Examination Scheme			
		L	T	P	D		ISE	ESE	ICA	Total
ME211	Applied Thermodynamics	3	-	-	-	3	30	70	-	100
ME212	Mechanics of Materials	3	-	-	-	3	30	70	-	100
ME213	Manufacturing Processes	3	-	-	-	3	30	70	-	100
ME214	Machine Drawing & CAD	3	-	-	-	3	30	70	-	100
ME215	Professional Elective-I	3	-	-	-	3	30	70	-	100
Sub Total		15	-	-	-	15	150	350	-	500
MEV21	Environmental Sciences	1	-	-	-	-	-	-	-	-

Semester 3: Laboratory / Tutorial Courses

Course code	Name of Laboratory / Tutorial Course	Hrs./week				Credits	Examination Scheme				
		L	T	P	D		ISE	ESE		ICA	Total
ME211	Applied Thermodynamics	-	-	-	-	-	-	-	-	-	-
ME212	Mechanics of Materials	-	1	-	-	1	-	-	-	25	25
ME213	Manufacturing Processes	-	-	2	-	1	-	-	25	25	50
ME214	Machine Drawing & CAD	-	-	-	4	2	-	50	-	50	100
ME215	Professional Elective-I	-	-	2	-	1	-	-	-	25	25
Sub Total		-	-	-	-	5	-	50	25	125	200
Grand Total		15	01	04	04	20	150	425	125	700	

Abbreviations: L - Lectures, P - Practical, T - Tutorial, ISE - In Semester Examination, ESE - End Semester Examination (University Examination for Theory & / POE & / Oral), ICA - Internal Continuous Assessment.

Professional Elective-I: A. Microprocessors in Automations B. Internal Combustion Engines C. Composite Materials

PUNYASHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR
Faculty of Engineering & Technology

Credit System structure of S.Y. B. Tech. Mechanical Engineering W.E.F. 2019-20

Semester 4

Course code	Name of Theory Course	Hrs./week				Credits	Examination Scheme			
		L	T	P	D		ISE	ESE	ICA	Total
ME221	Engineering Mathematics –III	3	-	-	-	3	30	70	-	100
ME222	Manufacturing Technology	3	-	-	-	3	30	70	-	100
ME223	Fluid Mechanics & Fluid Machines	3	-	-	-	3	30	70	-	100
ME224	Kinematics & Theory of Machines	3	-	-	-	3	30	70	-	100
ME225	Professional Elective-II	3	-	-	-	3	30	70	-	100
	Sub Total	15	-	-	-	15	150	350	-	500
MEV22	Environmental Sciences	1	-	-	-	-	-	-	-	-

Semester 4: Laboratory / Tutorial Courses

Course code	Name of Laboratory / Tutorial Course	Hrs./week				Credits	Examination Scheme			
		L	T	P	D		ISE	ESE		Total
ME221	Engineering Mathematics –III	-	1	-	-	1	-	-	-	25
ME222	Manufacturing Technology	-		2	-	1	-	-	-	25
ME223	Fluid Mechanics & Fluid Machines	-	-	2	-	1	-	-	-	25
ME224	Kinematics & Theory of Machines	-	-	2	-	1	-	-	25	50
ME225	Professional Elective-II	-	-	2	-	1	-	-	-	25
ME 226	Mechanical Workshop-I	-	-	2	-	1	-	-	-	50
ME 227	Electrical Technology	-	-	2	-	1	-	-	25	50
	Sub Total	-	01	12	-	07	-	50	200	250
	Grand Total	15	01	12	-	22	150	400	200	750

Abbreviations: L - Lectures, P -Practical, T- Tutorial, ISE - in Semester Examination, ESE - End Semester Examination (University Examination for Theory & / POE & / Oral), ICA- Internal Continuous Assessment.

Professional Elective-II: A. Mechatronic Systems B. Power Plant Engineering C. Solid Mechanics

Teaching Scheme

Theory: 3Hrs/week

Practical: 2Hrs/week

Examination Scheme

ESE: 70 Marks

ISE: 30Marks

ICA: 25Marks

OE: 25 Marks

□ Course Introduction:

This course covers all primary manufacturing processes like casting, forging, rolling, extrusion and Drawing along with Fabrication. These processes are basics of Mechanical Engineering Programme. The basics of this processes along with their applications and equipment and machinery required for the processes is covered in brief. This course also introduces Manufacturing Techniques for plastic products. Recent trends in various processes are also discussed in brief.

□ Course Perquisite: Fundamentals of Mechanics, force, power and mechanical properties of materials, thermal properties of materials is required to be known to the candidate undergoing to the course.

□ Course Objective:

1. To introduce to the students the casting technique and its significance in manufacturing.
2. To introduce to the students with various plastic deformation processes and their application.
3. To introduce to the students the various fabrication techniques and their significance in Industry.
4. To introduce to the students with various plastic manufacturing processes.
5. To introduce to the students with recent trends in this processes.

□ Course Outcomes: At the end of this course, the students will be able to

1. Select appropriate manufacturing process for a given component.
2. Understand performance of each process.
3. Prepare manufacturing plan for the given component.

SECTION I

UNIT-1 Casting Processes

No. of lectures-06

□ Definition of casting, Basic steps in casting processes, Advantages, limitations and applications of casting process, General introduction to patterns, Types of patterns, materials used, Allowances, types of cores and core boxes, molding materials and its properties, Gating system, types of risers, Function of riser, , method to improve efficiency of risers. Riser design simple numerical problems.

UNIT-2 Molding processes

No. of lectures-09

□ Green sand molding (hand and machine molding), Shell molding, Investment casting, centrifugal casting, , gravity and pressure die casting processes.

- Induction furnace construction and working in brief of melting furnaces such as Cupola, Arc furnaces, induction furnaces, Crucible, oil and gas fired furnaces.

UNIT-3 Fettling, Cleaning and Inspection of Castings **No. of lectures-05**

- Need for fettling, stages in fettling, equipments used infettling and cleaning of castings, Common important defects in castings. Inspection procedure, Computer applications in foundry processes, foundry, Mechanization.

SECTION II

UNIT-4 Conventional Forming Processes: **No. of lectures-07**

- Introduction to forming process, Classification of forming processes, forging, types of forging, simple numerical problem on upset forging. Extrusion, Types – direct extrusion, indirect extrusion, impact extrusion, hydrostatic extrusion, Wire drawing process, Methods of tubedrawing, hot rolling, cold rolling of sheets, classification of Rolling mills, theory of rolling, simple numerical problems on rolling.

UNIT-5 Advanced Forming Processes: **No. of lectures-05**

- Introduction to advanced forming process, High energy rate forming process- explosive, electro-hydraulic, magnetic pulse forming. Forming with hydrostatic pressure- hydro-mechanical and hydro forming process.

UNIT-6 Introduction to Joining processes **No. of lectures-08**

- Welding processes, classification of welding process, arc welding, welding rod selection, TIG welding & MIG welding, submerged arc welding, gas welding, resistance welding, Brazing and soldering.

□ Internal Continuous Assessment(ICA):

1. Design of pattern and core for a simple component.
2. Testing of silica sand for grain fineness and clay content.
3. Testing of green sand for green compression strength, permeability.
4. Study of mold for moisture content and core hardness tester.
5. Study of manufacturing sequence of upset forging with example.
6. Study of VI characteristic of welding process.
7. Visit to Foundry unit.
8. Visit to forging shop.

□ Text Books:

1. Heine, Lopar, Rosenthal, Principles of Metal Casting.
2. N.D. Titov, Foundry Practice.
3. P.L. Jain, Principles of Foundry Technology.
4. P.N.Rao, Manufacturing Technology: Foundry, Forming and Welding.
5. Production Technology by P.C.Sharma

S.Y.B. Tech. (Mechanical Engineering) Semester-III

ME215 – B: Professional Elective -I

INTERNAL COMBUSTION ENGINE

Teaching Scheme

Theory: 3 Hrs/week

Practical: 2 Hrs/week

Examination Scheme

ESE: 70 Marks

ISE: 30 Marks

ICA: 25 Marks

Course Objectives:

During this course, student is expected

1. Distinguish the different types of engine constructions and their thermodynamic principles.
2. Differentiate the constructional details of various fuel systems used in different types of I. C. Engines and calculate major dimensions of carburettor and fuel injection system.
3. Apply the basic knowledge to infer the different methods for enhancing the performance of I. C. engines
4. Correlate the difference in SI and CI engine combustion processes with the design of combustion chambers used in these engines
5. Evaluate the performance parameters of I. C. engines to justify their use in different applications.
6. Categorize different alternative fuels suitable for different engine applications and compare the pollutants formed in these engines and their control methods

Course Outcomes:

At the end of this course, student will be able to

1. Recognize and understand the reasons for differences in the construction of different types of internal combustion engines.
2. Understand the reasons for differences among operating characteristics of different engine types and designs
3. Select the appropriate engine for a given application.
4. Conduct performance tests on engines and Compare experimental results with Theoretical predictions.
5. Compare experimental results with theoretical predictions and make proper justifications.

Section I

Unit 1 - Introduction to I. C. Engine

No. of lectures – 05

Introduction, Classification of I.C. Engines, Engine Cycles-Otto and Diesel Cycle, Valve timing diagram for high and low speed engines, Port timing diagram for two strokes S.I. Engines.

Unit 2–Fuel System for S. I. Engines

No. of lectures – 06

Engine fuel requirements, Mixture requirements, Simple carburetor, and Additional systems in modern carburettor, compensating devices, Calculation of air fuel ratio (exact and approximate methods), Calculation of main dimensions of air and fuel supply (Numerical calculations of main dimensions of carburetor), Electronic Petrol injection system (MPFI).

Unit 3–Fuel System for C. I. Engines **No. of lectures – 05**
Requirements of fuel injection system for C.I. Engines, Types of injection systems-Individual pump, Common rail and Distributor systems, Unit injector, Types of fuel nozzles- single hole, multihole, pintle and pintaux, CRDI.

Unit 4–Supercharging **No. of lectures – 04**
Purpose of supercharging, Turbo charging, Thermodynamic cycle of supercharged and turbocharged Engines, Advantages and disadvantages, Limits of supercharging for S.I. and C.I. Engines.

Section II

Unit 5–Combustion in SI Engine **No. of lectures – 05**
Stages of combustion in S.I. Engines, Ignition lag, Flame propagation, Factors affecting flame speed, Abnormal combustion, Octane number, HUCR, Requirements of combustion chambers of S.I. Engines and its types.

Unit 6–combustion in C.I. Engines **No. of lectures – 05**
Stages of combustion in C.I. Engines, Delay period, Abnormal Combustion-Diesel knock, Requirements of combustion chambers for C.I. Engines and its types. Comparison of abnormal combustion in S I and C I Engines. Cetane number.

Unit 7 –Engine performance **No. of lectures – 05**
Performance parameters, Measurement of performance parameters like torque, power, and Volumetric Efficiency, Mechanical Efficiency, bsfc, Brake and Indicated Thermal efficiencies. Heat Balance Sheet. (Numerical on engine Performance and Heat Balance Sheet).

Unit 8–Alternative Fuels and Engine Emission **No. of lectures – 05**
Various alternative fuels and their suitability for I. C. Engines. S.I. Engine emissions (HC, CO, NOx), C.I. Engines Emissions (CO, NOx, Smog, Particulate), Bharat Norms

TERM WORK

Term work (minimum 3 from group A and B, and all from Group C)

Group A (Study Group)

- i. Constructional details of I.C. engines
- ii. Study of Engine Cooling and Lubrication system
- iii. Study of Ignition systems and Starting systems
- iv. Study of fuel system for S.I. and C. I. engines

Group B (Trial Group)

- i. Constant Speed Test (Influence of load on performance)
- ii. Morse Test
- iii. Heat balance sheet
- iv. Test on computer controlled I.C. Engine/ Variable Compression Ratio Engine
- v. Measurement of exhaust emissions of SI / CI engines

Group C

- i. Assignment on recent trends in IC Engine.
- ii. Visit to an engine manufacturing company / repairing unit.

Text books:

- 1 Internal Combustion Engines, Mathur and Sharma, DhanpatRai.
- 2 Engineering Fundamentals of the Internal Combustion Engine, Willard Pulkrabeck, Prentice Hall
- 3 Internal Combustion Engines, R. K. Rajput, DhanpatRai Publications.
- 4 Internal Combustion Engines, V.Ganesan, McGraw Hill.

Reference books:

- 1 Internal Combustion Engines Fundamentals, John Heywood, McGraw Hill
- 2 Internal Combustion Engines Emission and Control, Eran Sher, SAE
- 3 Engine Emissions Purandir, Narosa
- 4 Alternative Fuels, S.S Thipse, Jaico
- 5 Internal Combustion Engines Fundamentals, Maleev, McGraw Hill
- 6 Internal Combustion Engines Vol. 1 and Vol. 2, C.F Taylor, MIT Press
- 7 Internal Combustion Engines, *Obert*, McGraw Hill
- 8 Internal Combustion Engines: Applied Thermo sciences, Fergusson & Kirkpatrick, Wiley.
- 9 SAE Handbook, SAE, SAE.

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

S.Y.B. Tech.(Mechanical Engineering) Semester-IV

ME222 MANUFACTURING TECHNOLOGY

Teaching Scheme

Theory: 3Hrs/week

Practical: 2Hrs/week

Examination Scheme

ESE: 70 Marks

ISE – 30Marks

ICA: 25Marks

Course Introduction:

Machining is accomplished with the use of machines known as machine tools. For production of variety of machined surfaces, different types of machine tools have been developed. The kind of surface produced depends upon the shape of cutting, the path of the tool as it passes through the material or both depending on metal cutting processes are called either turning or planning or boring or other operations performed by machine tools like lathe, shaper, planer, drilling, milling, grinding, gear cutting, CNC or VMC and other Non-conventional machine.

Course Prerequisite:

In general manufacturing process is an economic term for making goods and services available to satisfy human wants. It involves a series of related activities and operation is called production System. It is depicted as an input –output system, here the inputs elements undergo technological transformation (machine tools) to yield a set of output elements called as product.

Course Objective:

1. To study the conventional machining processes such as drilling, milling, shaping, planning carried out on typical machine tools for different applications.
2. To study unconventional machining processes such as EDM, ECM, AWJM and USM carried out on special purpose machine tools for typical applications.
3. To compare and select a suitable manufacturing process.

Course Outcomes: At the end of this course, the students will be able to

1. Exhibit knowledge of conventional, unconventional & modern machining processes and machine tools.
2. Select proper manufacturing process for the typical application.

SECTION I

UNIT-1 Conventional Lathe Machine

No. of lectures-06

Introduction to Centre Lathe, parts and functions, specifications, accessories and attachments. Lathe operations, Taper turning methods, simple Numerical on Thread cutting. Introduction to CNC machine tools, Classification of CNC, advantages, limitations and application.

UNIT-2 Hole making machine tools

No. of lectures-08

Classification, construction and working of Pillar type and radial drilling machines, Job & Tool holding devices and accessories, various operations. Horizontal and vertical boring machines, construction and working, Boring tools and bars, Jig boring machines. Broaching, principal, classification, pull and push type broach, advantages, limitations and application.

UNIT-3 Reciprocating motion machine tools	No. of lectures-06
Principle, types, specifications, operations on shaper, Types of shapers, Types of planers, standard double housing plainer, construction, and operations. Introduction to construction and working of slotting machine.	

SECTION II

UNIT-4 Milling & gear manufacturing	No. of lectures-09
Classification of Milling Machines, construction and working of column and knee type milling Machines, Milling methods – Up milling and down milling, milling operations, Gear cutting on milling machines, Gear Hobbing, gear shaving, gear burnishing, indexing methods, Numerical on Indexing Methods.	

UNIT-5 Finishing Processes	No. of lectures-05
Classifications – Cylindrical, Center less, Surface grinder etc. Selection mounting, glazing, loading, truing, balancing, Surface finishing process, Honing, Lapping, super finishing.	

UNIT-6 Unconventional Machining	No. of lectures-06
Introduction, classification, significance of Unconventional machining, Electrical discharge machining (EDM), Electrochemical Machining (ECM), Ultrasonic machining (USM), Abrasive Water Jet Machining (AWJM), Principle, working, applications, advantages, limitations	

Internal Continuous Assessment (ICA):

1. Setting the lathe machine for taper turning by swiveling compound rest.
2. Setting the lathe machine for taper turning by set over of tail stock and taper turning attachment.
3. Setting the lathe machine for thread cutting operation.
4. Study and demonstration of attachments on milling machine.
5. Study and demonstration of various types of milling cutters.
6. Setting the milling machine for gear cutting operation.
7. Study and demonstration of various types of grinding wheels and their specifications.
8. Visit to at least one machine shop and one CNC shop.

Text Books:

1. Workshop Technology (Volume II) by Hajra Chowdhary.
2. Workshop Technology (Volume II) by Raghuvanshi
3. Production Technology (Volume II) by Gupte-Patel.
4. Workshop Technology (Volume II) by W. A. J. Chapman.
5. Manufacturing Technology-P. N. Rao Vol. II.

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

S. Y.-B. Tech. (Mechanical Engg.) Semester-IV

ME225 – B: Professional Elective -II

POWER PLANT AND ENERGY ENGINEERING

Teaching Scheme

Lectures – 3 Hours/week

Practical – 2 Hour/week

Examination Scheme

ESE – 70 Marks

ISE – 30 Marks

ICA – 25 Marks

Course Introduction:

Availability of power is the one key area where most of the Indian industry is facing problems. In India, even today, short fall of power generation is about 30 percent. Fuel supply and distribution is also an area where country is still developing smooth lines of supply. Since power and energy is required by every sector of economy, the growth in this sector is must if Indian economy grows in any sector. Many of the job opportunity in private as well as public sector are therefore waiting for students in this field. Hence, this course attempts to provide them basic knowledge of the technologies available at plant level and would also acquaint them with the latest technological advances taking place in this sector.

Course Prerequisite:

Basic Mechanical Engineering, Engineering Physics, Thermal Power Engineering- Boilers, thermal cycle, Thermodynamic devices

Course Objectives: During this course, student is expected to-

1. Study of Power Station performance evaluation & economic analysis.
2. Study of various non-conventional energy sources & principles of energy
3. Explain various loads on power plant.
4. Illustrate Significance of different load curves and load factors on power plant.
5. Explain variable load on power plant.
6. Study & explain economics of power plant.
7. Study various Other Non- Conventional Energy Sources.
8. Study Process of Energy Audit.

Course Outcomes: At the end of this course, student will be able to-

1. Get basic knowledge for effective use of available energy sources by suitable planning of power generation in thermal, hydro, gas & atomic power plant. .
2. Describe energy conversion in power plants.
3. Describe role of various organizations of power sector
4. Explain load curves and load factors.
5. Explain calculation of fixed & operating cost
6. Study the Classification of WEC systems.
7. Explain duties & responsibilities of energy auditors.

Section I

Unit 1– Introduction of Energy Sources **No. of lectures – 04**

Forms & characteristics of renewable energy sources, Organization of Power Sector in India, Impact of energy sources (coal, oil, natural gas, solar, wind, biomass, hydro, geothermal, tidal, wave, ocean thermal and nuclear) on environment, Role of private sector in energy management.

Unit 2– Loads on Power Plant **No. of lectures – 05**

Introduction, Different load curves and load factors, Effect of variable load on power plant, design & operation, comparison of the various power plants. (Numerical treatment)

Unit 3– Peak Load & Base Load Power Plants **No. of lectures – 05**

Introduction & classification, Requirement of peak load plant, Types, Pumped storage plants, Compressed air storage plants, Load sharing between base load & peak load power stations. (Numerical treatment)

Unit 4– Economic Analysis of Power Plants **No. of lectures – 06**

Introduction, Cost of electric energy, Fixed and operating cost, Methods of determining depreciation, Selection of site for Power station(thermal, hydro, nuclear), Selection of generation equipment, Tariff methods. (Numerical treatment)

Section II

Unit 5– Solar Energy **No. of lectures – 05**

a) Solar radiation outside the earth's atmosphere & at the earth's surface, Solar radiation measurement – Pyranometer & Pyrheliometer, solar radiation geometry. LAT & SCT, Solar concentrators-Method and classification, Types of concentrators.

b) Liquid flat plate collector – General, Performance analysis, Effects of various parameters. (Numerical treatment)

Unit 6– Wind Energy **No. of lectures – 05**

Introduction, Power of wind, Basic components of 'WECS', Classification of WEC systems., Horizontal axis machines, Vertical axis machines, Advantages & Disadvantages of WECS, Application of wind energy. (Numerical treatment)

Unit 7. Non- Conventional Energy Sources **No. of lectures – 05**

Geothermal energy – Introduction, Types of geothermal resources, Methods of Harnessing. Tidal energy components of tidal power plant, single basin system, Double basin system, Advantages & Disadvantages of tidal energy. Ocean thermal energy – Introduction, open & closed systems. Wave Energy – wave energy, energy conversion devices- High pressure accumulator wave machines, Dolphin type wave machine, Dam Atoll wave machine.

Unit 8– Energy Audit & Energy Conservation

No. of lectures – 05

Energy Audit - Definition & objective of Energy audit, Energy flow diagram, Energy Audit Instruments; Duties and responsibilities of energy auditors, Duties and responsibilities of energy managers.

Energy Conservation- Introduction, energy conservation act 2001 & its feature, energy conservation in industries – Chemical industry, Cement industry & Sugar industry. Energy conservation in house hold & commercial sectors.

- **Term Work:**

Group - I: Any two Experiment from Expt. No. 1 to 5

1. Solar radiation & its measurement
2. Test on solar water heater
3. Efficiency measurement of standalone solar P-V system
4. Study of components of windmill
5. Identifying & measuring the parameters of a solar PV module in the field

Group - II: Minimum Six Assignments based on following topics –

1. Study of solar collectors
2. Study of solar thermal applications- solar water heating, space heating, power
3. Study of solar pond / solar photovoltaic
4. Study of Biogas plants
5. Study of instruments of a power plant water purity, PH meter, Gas analysis, Measurement of smoke & dust.
6. Study of various pollution control devices
7. Study of various Energy storage devices.

Group - III

1. The report based on any Industrial Visit to renewable energy appliances or power generation transmission station.

- **Text Books:**

1. Generation of electrical energy – B. R. Gupta, S. Chand & Co. Ltd.
2. A course in Power Plant Engineering – Arora Domkundwar, Dhanpat Rai & Co.
3. Solar Energy – S. P. Sukhatme, Tata McGraw Hill Co.
4. Solar Energy – G. D. Rai, Khanna Publisher.
5. Energy Technology – S. Rao & Dr. B. B. Purulekar, Khanna Publishers.
6. Power Plant Engineering – P. K. Nag, Tata McGraw Hill Publishing Co.
7. Power Plant Engineering – R. K. Rajput

- **Reference Books:**

1. Power Plant Technology – M. M. El Wakil.
2. Bureau of Energy efficiency Manual
3. Non-conventional Energy Sources- G.D.Rai, Khanna Publisher.

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

S. Y.-B. Tech. (Mechanical Engg.) Semester-IV

ME 226 MECHANICAL WORKSHOP-I

Teaching Scheme

Practical– 2 Hrs. /Week

Examination Scheme

ICA – 50 Marks

Course Prerequisite:- fundamental machine shop instruction involving safety use and care of hand and measuring tools basic operation of all conventional machines and grinding of single point tools, screw threads and taper turning and their application classes of fits and tolerances are stressed students will be provided the opportunity to learn and practice bench work skills.

Course Objectives:

1. To get hands on experience of machining techniques such as grinding, drilling, shaping, turning etc. studied in theory subjects.
2. To develop skills to operate different machine tools.
3. To get hands on experience in pattern making, joining processes and forming processes.
4. To develop skills in pattern making and sheet metal work.

Course Outcomes: At the end of this course, the student will be able

1. To operate different machine tools such as grinders, lathes, drilling machines etc.
2. To machine the component as per specified dimensions.
3. To develop the skills necessary for engineering practices like joining and forming processes.
4. To Choose and apply the appropriate methods for pattern making & sheet metal working

Preparation of Wooden pattern (single piece) for a simple component:

Part A –

1. This shall cover – Study of component drawing, preparing casting drawing, Allowance table, Pattern drawing, Deciding parting line & Deciding pattern making process. (2 Turns)

Part B – Actual manufacturing of pattern. (2 Turns)

2. Study of gas welding & gas cutting equipments, Study of arc welding equipment, Study & demonstration of resistance welding, Study of various types of welding joints & demonstration of gas & arc welding, Manufacturing of one job on arc welding. (2 turns)
3. Demonstration Study of sheet metal operations like bending, shearing, lancing, perforating, punching etc...
4. One sheet metal job consisting of at least 3 operations. (Either performed manually or on press) Demonstration: (2 Turns)

OR

4. Study of various hand forging operations like upsetting, drawing down, piercing, swaging etc...One job involving 3 operations. (Either performed manually or on press) (2 Turns)

Note: Students shall prepare a work book involving brief write up regarding machine/machines employed for job. Students should prepare a work book which involves a process sheet for each job and inspection report of the job. Based on the job performed, attendance record, work book, internal viva, faculty members may evaluate the term work.

• Books:

1. Workshop Technology (Volume II) by Raghuvanshi.
2. Workshop Technology (Volume II) by Hajra Chowdhary.
3. Workshop Technology (Volume II) by W.A.J.Chapman.
4. Production Technology by P.C. Sharma.
5. Production Technology – HMT Handbook.
6. Production Technology (Volume II) by Gupte-Patel.
6. P.L. Jain, Principles of Foundry Technology.
7. P.N. Rao, Manufacturing Technology: Foundry, Forming and Welding.
8. Workshop Technology (Volume II) by W.A.J. Chapman.
6. Production Technology – HMT Handbook.

• Reference Books:

1. Manufacturing Processes & systems by Phillip F. Ostwald, Jairo Munoz-Wiley India.
2. Fundamentals of modern Manufacturing by Mikel P. Groover-Wiley India

SOLAPURUNIVERSITY, SOLAPUR

FACULTY OF ENGINEERING & TECHNOLOGY

MECHANICAL ENGINEERING

Syllabus Structure for

T.E. (Mechanical Engineering)

w. e. f. Academic Year 2018-19

Choice Based Credit System

॥ विद्यया संपन्नता ॥

SOLAPUR UNIVERSITY, SOLAPUR
Faculty of Engineering & Technology

Structure of CBCS Curriculum for Third Year (Mechanical Engineering) w.e.f. 2018-19

Semester I : Theory Courses

Course code	Name of Theory Course	Hrs./week				Credits	Examination Scheme			
		L	T	P	D		ISE	ESE	ICA	Total
ME311	Theory of Machine -II	3	-	-	-	3	30	70	-	100
ME312	Metrology and Mechanical Measurement	3	-	-	-	3	30	70	-	100
ME313	Metallurgy	3	-	-	-	3	30	70	-	100
ME314	Machine Design -I	3	-	-	-	3	30	70	-	100
ME315	Professional Elective -III	3	-	-	-	3	30	70	-	100
SLH31	Self Learning Course I -HSS	-	-	-	-	2	-	50		50
Sub Total		15	-	-	-	17	150	400		550

Semester I: Laboratory / Tutorial Courses

Course code	Name of Laboratory /Tutorial Course	Hrs./week				Credits	Examination Scheme					
		L	T	P	D		ISE	ESE		ICA	Total	
								POE	OE			
ME311	Theory of Machine -II	-	-	2	-	1	-	-	25	25	50	
ME312	Metrology and Mechanical Measurement	-	-	2	-	1	-	-	-	25	25	
ME313	Metallurgy	-	-	2	-	1	-	-	25	25	50	
ME314	Machine Design -I	-	-	2	-	1	-	-	-	25	25	
ME315	Professional Elective -III	-	-	2	-	1	-	-	-	25	25	
ME316	Advanced Computer Programming -I	1	-	2	-	2	-	-	-	50	50	
ME317	Workshop Practices -IV	-	-	2	-	1	-	-	-	50	50	
Sub Total		-	-	14	-	8	-	-	50	225	275	
Grand Total		16	-	14	-	25	150	450	225	825		

Abbreviations: L - Lectures, P - Practical, T - Tutorial, ISE - In Semester Examination, ESE - End Semester Examination (University Examination for Theory & / POE & / Oral), ICA - Internal Continuous Assessment.

Professional Elective -III: Machine Tool Design, Material Handling System, Fluid Machinery & Fluid Power

SOLAPUR UNIVERSITY, SOLAPUR

Faculty of Engineering & Technology

Structure of CBCS Curriculum for Third Year (Mechanical Engineering) w. e. f 2018-19

Semester II : Theory Courses

Course code	Name of Theory Course	Hrs./week				Credits	Examination Scheme			
		L	T	P	D		ISE	ESE	ICA	Total
ME321	Heat and Mass Transfer	3	-	-	-	3	30	70	-	100
ME322	Internal Combustion Engine	3	-	-	-	3	30	70	-	100
ME323	CAD-CAM & CAE	3	-	-	-	3	30	70	-	100
ME324	Machine Design -II	3	-	-	-	3	30	70	-	100
ME325	Professional Elective -IV	3	-	-	-	3	30	70	-	100
ME326	Self Learning Course II-Technical	-	-	-	-	2	-	50	-	50
	Sub Total	15	-	-	-	17	150	400	-	550

Semester II: Laboratory / Tutorial Courses

Course code	Name of Laboratory / Tutorial Course	Hrs./week				Credits	Examination Scheme					
		L	T	P	D		ISE	ESE		ICA	Total	
								POE	OE			
ME321	Heat and Mass Transfer	-	-	2	-	1	-	25	-	25	50	
ME322	Internal Combustion Engine	-	-	2	-	1	-	-	-	25	25	
ME323	CAD-CAM & CAE	-	-	2	-	1	-	-	-	25	25	
ME324	Machine Design -II	-	-	2	-	1	-	-	25	25	50	
ME325	Professional Elective - IV	-	-	2	-	1	-	-	-	25	25	
ME327	Advanced Computing Techniques'-II	1	-	2	-	2	-	-	-	50	50	
ME328	Workshop Practice -V	-	-	2	-	1	-	25#	-	25	50	
	Sub Total	-	-	14	-	08	-	75	200	275		
	Grand Total	16	-	14	-	25	150	475	200	825		

Abbreviations: L -Lectures, P -Practical, T -Tutorial, ISE - In Semester Examination, ESE - End Semester Examination (University Examination for Theory & / POE & / Oral), ICA - Internal Continuous Assessment.

Professional Elective – IV: Experimental Stress Analysis, Mechanical Vibration, Tool engineering # Indicates practical Examination only.

- **Note –**

1. Batch size for the practical /tutorial shall be of 15 students. On forming the batches, if the strength of remaining students exceeds 07, then a new batch shall be formed.
2. Industrial Training (evaluated at B.E. Sem.-I) of minimum 15 days shall be completed in any vacation after S.E. Sem.-II, may be Maximum in two slots but before B.E. Sem.-I & the report shall be submitted and evaluated in B.E. Sem.-I.
3. Students shall select one Self Learning Module at T.E. Sem. I and T.E. Sem. II each from Humanities and Social Sciences and Technical Groups Respectively.
4. Curriculum for Humanities and Social Sciences Self Learning Modules is common for all under graduate programmes of faculty of Engineering and Technology.
5. Minimum four assignments for Self Learning Modules at T.E. Sem.-I be submitted by the students which shall be evaluated by a Module Coordinator assigned by institute / department.

6. for TE Part I -

A. Student can select a Self Learning Course from Solapur University, Solapur HSS Course List and appear for its examination as and when conducted by Solapur University, Solapur

OR

B. Student can enroll for National Programme on Technology Enhanced Learning (NPTEL) course, complete its assignments and appear for certificate examination as and when conducted by NPTEL.

For more details about Self Learning Course (HSS) please refer to separate rule document available from Solapur University, Solapur

More details about NPTEL are available at <http://nptel.ac.in>

7. ICA assessment shall be a continuous process based on student's performance in class tests, assignments, homework, subject Seminars, quizzes, laboratory books and their interaction and attendance for theory and laboratory sessions as applicable

Solapur University, Solapur
T.E. (Mechanical Engineering) Semester-I
ME312 Metrology and Mechanical Measurement

Teaching Scheme

Lectures– 3 Hours/week, 3 Credits
Practical – 2 Hour/week, 1 Credit

Examination Scheme

ESE– 70 Marks
ISE –30 Marks
ICA- 25 Marks

Course Introduction:

This course seeks to provide an introduction to measurements and to concepts and terms related to it. The subject covers working of generalized measuring systems and elements in it. The course provides information about the principle and working of various measuring instruments used for the measurement of dimensions and geometrical properties. The course covers the design and working of the measuring instruments which are used for measurements of other physical properties such as temperature, pressure etc. and quantities such as force, strain, speed etc. The course also covers the study of various standards, limit gauges as well as comparators.

Course Prerequisite:

Student shall have knowledge of function of machine elements such as gears, levers etc. and of simple mechanisms. A sound background of fundamental laws and principles related to different properties such as pressure, temperature etc. and quantities such as force, stress, strain etc. is essential.

Course Objectives: During this course, student is expected

1. To study the principles, construction and working of various measuring instruments used for measurement of various mechanical properties such as geometrical, dimensional, pressure, temperature etc and of parameters such as force, strain etc.
2. To study the concepts related to interchangeability, limits, fits, guidelines by BIS and design of limit gauges.
3. To learn the use of various measuring instruments with different setups for accurate measurements.
4. To get acquainted with various standards of measurements & the calibration process of instruments.

Course Outcomes: At the end of this course,

1. Students will understand the design & construction of measuring instruments.
2. Students will setup the Instruments & accessories for measurement of properties by avoiding errors.
3. Students will calibrate the simple instruments using more accurate standards.
4. Students will use the instruments for various industrial applications such as quality control, process control etc

Section I

Unit 1. Introduction: Principles and Standards of measurement No of lectures – 05

• **Prerequisite:** Knowledge of basic principles from the subjects of Physics, Theory of Machines and machine drawing.

• **Objectives:**

1. To get acquainted with various standards of measurements.
2. To Study the principles of simple length measuring instruments.

• **Outcomes:** After completing this unit, student will

1. Use the length measuring instruments.
2. Calibrate the simple instruments using more accurate standards.

• **Unit Content:**

Concept and need of measurement. Precision and accuracy. Classification of standards, International standards of length. Line, End & Wave length standards, Slip gauges, Slip-gauge sets (M-45, M-87). Selection of slip gauges including numerical problems. Measuring principles of Vernier caliper & micrometer.

• **Content Delivery Methods:** Board, Chalk and talk

Unit 2. Systems of Limits and Fits and Limit Gauging: No of lectures – 05

Prerequisite: Knowledge of manufacturing processes, machine drawing.

• **Objectives:**

1. To study the concepts related to interchangeability, limits, fits, guidelines by BIS and design of limit gauges.

• **Outcomes:** After completing this unit, student will

1. Use IS 919 for identifying the tolerances and limit deviations as well as for selection of fits.
2. Design limit gauges for simple hole and shaft components.

• **Unit Content:**

Terminology, Interchangeability, Types of tolerances, Types of fits, Grades of tolerances and types of fundamental deviations. Hole and shaft basis systems. Use of BIS charts (IS 919) specifying fundamental deviations and tolerances. Taylor's Principles of gauge design, types of gauges, Design of limit gauges, gauge tolerance & wear allowance, (numerical problems).

• **Content Delivery Methods:** Board, Chalk and talk

Unit 3. Comparators & angular measurements: No of lectures – 05

• **Prerequisite:** Knowledge of function of basic machine elements and mechanisms, Basic principles from Geometry and Physics.

• **Objectives:**

1. To Study the principles, construction and use of comparators and angle measuring instruments.

• **Outcomes:** After completing this unit, student will

1. Describe the design & construction of comparators and angle measuring instruments.

2. Setup the Instruments & accessories for measurement of properties by avoiding errors.

- **Unit Content:**

Introduction to comparators, Characteristics, Classification of comparators. Mechanical comparators – Johanson Mikrokator, Sigma comparator, dial indicators. Pneumatic comparators, Principle of optical comparators. Angular Measurements - Spirit level, Clinometers, Bevel Protractor, Principle & use of Sine Bars, Sine Centre, Use of angle gauges (Numerical on Building of angles) Autocollimator.

- **Content Delivery Methods:** Board, Chalk and talk

Unit 4. Screw-Threads, Gear Metrology & Recent trends in measurement:

No of lectures – 05

- **Prerequisite:** Knowledge of machine elements such as screw threads and gears and of principles from Theory of Machines, Geometry.

- **Objectives:**

1. To Study the principles, construction and use of Instruments used for measurement of Screw thread diameters and gear tooth thickness.
2. To get acquainted to latest trends in the mechanical measurements.

- **Outcomes:** After completing this unit, student will

1. Describe the design &construction measuring instruments used for screw thread and gear tooth measurement.
2. Setup the above instruments & accessories for measurement of properties by avoiding errors.

- **Unit Content:**

Basic elements of screw-thread, Methods of measurement of effective diameter, floating carriage Micrometer. Basic elements of spur-gear, Methods of measurement of gear tooth thickness. Introduction to modern measurement techniques- Co-ordinate Measuring Machine, laser Measurement, Multi Gauging Systems.

- **Content Delivery Methods:** Board, Chalk and talk

Section - II

Unit 5. Introduction to Mechanical Measurements:

No of lectures – 05

- **Prerequisite:** Knowledge of basic principles in Physics, Analysis of mechanical elements and basic electrical engineering.

- **Objectives:**

1. To learn the working of generalized measurement system and of the functional elements in it.
2. To know the static and dynamic terms and characteristics of general measuring instruments.

- **Outcomes:** After completing this unit, student will

1. Describe the working of the general measuring system and role of functional units.
2. Explain the effect of different characteristics on the performance of the instrument.

- **Unit Content:**

Need of Mechanical Measurement, Instruments, Measurement methods, generalized measurement system & its functional elements. Instrument characteristics - Static & Dynamic characteristics and terms, calibration. Classification of transducers.

- **Content Delivery Methods:** Board, Chalk and talk

Unit 6. Measurement of Temperature and Pressure: **No of lectures – 05**

- **Prerequisite:** Knowledge of basic principles of thermodynamics, fluid mechanics, machine elements and theory of machines.

- **Objectives:**

1. To acquire the knowledge of principle, construction and use of various instruments used for measurement of temperature and pressure.

- **Outcomes:** After completing this unit, student will

1. Explain the working of various temperature and pressure measuring instruments.
2. Setup the instruments and accessories thereof for accurate measurement.

- **Unit Content:**

Importance of temperature measurement, Thermometer, Thermocouple - Principle, Types. Resistance Thermometers - RTD, Thermistor. Importance of pressure & vacuum measurement, Range of high pressure & vacuum Bourdon tubes, Deadweight pressure-gauge tester, Diaphragm gauge, Piezo-electrical pressure gauge, Vacuum gauges - McLeod gauge, Pirani gauge.

- **Content Delivery Methods:** Board, Chalk and talk

Unit 7. Measurement of angular speed & flow: **No of lectures – 05**

- **Prerequisite:** Knowledge of basic principles of fluid mechanics, machine elements, theory of machines and basic electrical engineering.

- **Objectives:**

1. To acquire knowledge of principle, construction and use of various instruments used for measurement of angular speed and flow rate.

- **Outcomes:** After completing this unit, student will

1. Explain the working of various speed and flow rate measuring instruments.
2. Setup the instruments and accessories thereof for accurate measurement.

- **Unit Content:**

Importance of angular speed measurement, Mechanical tachometers, Electrical tachometers-Drag cup, Inductive, Photoelectric pickup, Stroboscope. Importance of Flow measurement, Turbine meter, Rota meter, Gas flow meter, Hot wire anemometer.

- **Content Delivery Methods:** Board, Chalk and talk

Unit 8. Measurement of Force, Torque & Strain: **No of lectures – 05**

- **Prerequisite:** Knowledge of machine elements, mechanics, basic electrical engineering, fluid mechanics.

• **Objectives:**

1. To acquire knowledge of principle, construction and use of various instruments used for measurement of force, torque and strain.

• **Outcomes:** After completing this unit, student will

1. Explain the working of various force, torque and strain measuring instruments.
2. Setup the instruments and accessories thereof for accurate measurement.

• **Unit Content:**

Force measurement- Balance, Proving Ring, Hydraulic, Pneumatic Load Cells, Torque measurement - Hydraulic, Eddy Current. Classification of strain gauges, Principle of electrical strain gauge, Gauge factor, Introduction to half bridge and full bridge network circuits.

• **Content Delivery Methods:** Board, Chalk and talk

• **TERMWORK**

A) Metrology Laboratory:

Any five of the following experiments (Experiment No. 1 is compulsory).

1. Uses of various length measuring instruments .Vernier instruments, Micrometer instruments, Dial instruments and Auxiliary instruments for carrying out measurements.
2. Calibration of Vernier caliper / Micrometer using slip gauges.
3. Use of at least one type of each class of comparator such as mechanical, optical, pneumatic, etc.
4. Measurement of angle using Bevel protractor and sine bar / sine centre. Use of Clinometer and Angle gauges.
5. Measurement of Gear tooth thickness using gear tooth vernier caliper/ plate type micrometer
6. Measurement of diameters of screw threads using screw thread micrometer and floating carriage micrometer.
7. Demonstration of advanced measuring equipment such as Co-ordinate Measuring Machine Multigauging Machines, Automatic inspection systems. (May be done through Industrial Visits / Virtual Laboratories).

B) Mechanical Measurements Laboratory

Any five out of the following experiments:

1. Temperature Measurement using thermo couples, RTD, Thermistor.
2. Testing of mechanical pressure gauge using Dead Weight pressure tester.
3. Vacuum measurement using U tube manometer & Mechanical Vacuum Gauge.
4. Angular speed measurement using mechanical tachometer, stroboscope, photo electric pickup, inductive pickup.
5. Flow measurement using Rotameter.
6. Measurement of bending strain or load using strain gauges.
7. Use of proving ring, load cells.
8. Measurement of torque.

* **Industrial Visit (Recommended for introduction to modern measuring instruments / Calibration Lab)**

Teaching Scheme
Lectures- 3 Hours/week,
Practical – 2 Hour/week,

Examination Scheme
ESE-70Marks
ISE-30 Marks
ICA – 25Marks

• Course Introduction:

This course seeks to provide an introduction to Fluid Machinery like water turbine, gas turbine, centrifugal pump and Fluid Power like hydraulic, pneumatic etc and discusses various procedures, requirements, design methods. A turbine design procedure against various head is also covered in content of the course. A further content explains in detail the various efficiency improving methods of open cycle gas turbine. It introduces various hydraulic and pneumatic elements for building various circuits according to the application. The features and varieties of hydraulic and pneumatic accessories is also covered in the course.

• Course Prerequisite:

Students shall have introductory knowledge of Water Turbines, Pumps, Gas Turbines and Various thermodynamic processes, laws of motion, material science etc is essential for successful completion of this course. A sound knowledge of vector algebra, fluid mechanics is essential for the study of this subject.

• Course objectives:

1. To study different types of Water turbines, Gas turbines and Pumps, in details.
2. To construct velocity triangles for turbines and pumps.
3. To learn the fundamentals and applications of fluid power technology, besides construction & working of different components.
4. To design various types of hydraulic & pneumatic circuits & their applications.

• Course outcomes: At the end of this course, the student will be able to

1. Classify turbines and pumps. Select/design water turbines, gas turbines & centrifugal pumps to meet the specific requirements.
2. Draw velocity triangles for turbines and pumps.
3. Analyze different components of hydraulic and pneumatic systems.
4. Construct different hydraulic & pneumatic circuits needed for different applications.

Section -I

Unit 1: Impulse Water Turbines

No of lectures – 05

• **Prerequisite:** Introductory knowledge of roto dynamic machines, material science, fluid mechanics and vector calculations is essential.

• **Objectives:**

1. Explain working principle of impulse turbines.
2. To introduce conceptual Euler's Equation of roto dynamic machines.
3. To study the performance of a Pelton Wheel turbine
4. To determine the characteristic curves of a Pelton turbine operating at a different fluid flow rates with high head.

• **Outcomes:**

1. Student can calculate work done and various efficiencies of impulse turbines.
2. Student will be able to understand different characteristics curves of impulse turbine due to the head available.
3. Student will be able to calculate the performance of turbine based on Euler's equation for roto dynamic machines.

• **Unit Content:** Euler's equation for roto dynamic machines, Classification of water turbines, Pelton wheel, Work done and efficiencies of Pelton wheel, working proportions of Pelton wheel, Design of Pelton Turbine runner, governing of Pelton turbine, Performance characteristics of Pelton turbine. (Numerical Treatment)

i. **Content Delivery Methods:** Board, Chalk and talk, Animation Video

Unit 2: Reaction Water Turbines:

No of lectures – 05

ii. **Prerequisite:** Introductory knowledge of roto dynamic machines, material science, fluid mechanics and vector calculations is essential.

iii. **Objectives:**

1. To introduce working principle of Francis & Kaplan Turbines.
2. To introduce Governing of Reaction Turbine
3. To introduce unit quantities & model testing
4. To introduce the concept of draft tube.

iv. **Outcomes:**

1. Understand the concept of unit quantities & model testing
2. Calculate the Work done & efficiency of reaction turbine
3. Understand the concept of Governing of reaction turbine

v. **Unit Content:**

Construction and Working of Francis, Kaplan turbine. Work done and efficiencies of Francis & Kaplan turbine, Working Proportions of Francis & Kaplan turbine, Specific speed of turbine (Pelton, Francis & Kaplan turbine), Model testing, unit quantities, Prediction of performance at other operating conditions, Draft tube (Theoretical treatment only), Types and function, governing of reaction turbines, Performance characteristics of Francis & Kaplan turbine. (Numerical Treatment).

vi. **Content Delivery Methods:** Board, Chalk and talk, Animation Video

Unit 3: Centrifugal Pumps

No of lectures – 05

- **Prerequisite:** Knowledge of Centrifugal force, fluid mechanics, vector calculations, material science, etc. is essential.

vii. **Objectives:**

1. To make students to understand basics of working principle of centrifugal pump
2. To introduce constructional details of centrifugal pump
3. To make the students aware of Maximum Suction Height & Net Positive Suction Head
4. To introduce specific speed of pumps, Performance characteristics of pump

viii. **Outcomes:**

1. Understand working of centrifugal and multistage pumps.
2. Understand the concept of cavitations in pumps.
3. Calculate manometric head, work done and various efficiencies related to the Pump

ix. **Unit Content:** Working principle, construction, types, various Heads, multistage pumps, Velocity triangles, Minimum starting speed, Cavitations, Maximum Suction Height & Net Positive Suction Head, Methods of priming, Calculations of efficiencies, Discharge, blade angles, Heads, Power required, impeller dimensions, specific speed of pumps, Performance characteristics of pumps.

(Numerical Treatment)

x. **Content Delivery Methods:** Board, Chalk and talk

Unit 4: Gas Turbines

No of lectures – 05

xi. **Prerequisite:** Knowledge of various thermodynamic processes, concept of thermal efficiency is essential.

xii. **Objectives:**

- i. To introduce classification of gas turbine.
- ii. To introduce various methods for improvements of thermal efficiency of open cycle gas turbine.
- iii. To introduce the various gas turbine fuels.

• **Outcomes:**

- i. Understand the classification of gas turbines.
- ii. Understand the various methods for improvement of thermal efficiency of open cycle gas turbine.
- iii. Student understands fuels used for gas turbine.

• **Unit Content:**

General aspects, Classification of gas turbines, merits of gas turbines, constant Pressure combustion gas turbines-open cycle gas turbine, methods for improvement of thermal efficiency of open cycle gas turbine plant-inter cooling, reheating, regeneration, effect of operating variables on thermal efficiency, closed cycle gas turbine, uses of gas turbine, gas turbine fuels.

(Numerical Treatment on basic Joule Cycle)

• **Content Delivery Methods:** Board, Chalk and talk

Section – II

Unit 5: Introduction to Fluid Power and Hydraulic System elements No of lectures – 05

- **Prerequisite:** Knowledge of Pumps and its types, material science, machine drawing, etc is necessary.

xiii. **Objectives:**

1. To Identify the various components used in Hydraulic System.
2. To Introduce the construction and working principle of various components used in Hydraulic System.
3. To Introduce the various symbols used in hydraulic and pneumatic system.
4. To calculate the force and velocity of piston.

• **Outcomes:**

1. Understand working principle of various components used in hydraulic system.
2. Understand the Accessories of hydraulic system.
3. Understand the various symbols and its meaning used in hydraulic and pneumatic system.
4. Calculate force and velocity of piston.

• **Unit Content:**

Types, advantages, applications of fluid power, Pumps- Types, working, Characteristics, Applications. Seals & Packing- Types, materials, Applications. Hydraulic Actuators- Linear &Rotary, Types, Working, Cushioning effects, Calculation of force & velocity of piston. System components: Accumulators, Intensifiers, their types, working, applications. Symbols used in hydraulic and pneumatic circuits.

• **Content Delivery Methods:** Board, Chalk and talk

Unit 6: Pneumatic System Elements:

No of lectures – 05

- **Prerequisite:** Knowledge of air compressor, fluid mechanics, force calculations, etc is necessary.

• **Objectives:**

- i. To introduce the construction and working principle of various components used in Pneumatic System.
- ii. To Introduce the various Accessories used in Pneumatic system.

• **Outcomes:**

- i. Understand working principle of various components used in Pneumatic system.
- ii. Understand the Accessories of pneumatic system
- iii. Student Get the importance of the Piping layout while building the circuit diagram.

• **Unit Content:**

Piping, materials and pressure ratings, piping layout, air compressors, types,working, selection criteria, FRL unit- construction and working, pneumatic cylinders and air motors, construction and working, types.

• **Content Delivery Methods:** Board, Chalk and talk

Unit7: Hydraulic and Pneumatic Control Elements**No of lectures – 05**

- **Prerequisite:** Knowledge of engineering drawing, properties of fluid used in Hydraulic & Pneumatic System.

- **Objectives:**

- To introduce the construction and working of various direction control valve used in hydraulic and pneumatic system.
- To introduce the construction and working of various flow control valves and pressure control valves used in hydraulic and pneumatic system.
- The selection of proper control valves for building the various circuit diagram.

- **Outcomes:**

- Understand working principle of various direction control valves used in hydraulic and pneumatic system.
- Understand working principle of various flow control valves, pressure control valves used in hydraulic and Pneumatic system.
- To differentiate the various control valves used in hydraulic and pneumatic system.
- To choose proper control valves according to the applications/ circuits.

- **Unit Content:**

Hydraulic - Pressure control valves- Direct acting type, pilot operated, sequence, Counter balancing, unloading, pressure reducing, Construction & Working. Direction control valves- Types, Construction & working, Spool actuation methods, spool centre positions, Flow control valves-Compensated& Non-Compensated, Construction & Working. Pneumatic-Direction control valves, Flow control valves and pressure control valves-types and working.

- **Content Delivery Methods:** Board, Chalk and talk

Unit 8: Hydraulic and Pneumatic Circuits & their applications: No of lectures – 05

- **Prerequisite:** Knowledge of various hydraulic and pneumatic systems, theory of machines is essential.

- **Objectives:**

- To introduce Speed control circuits
- To introduce Regenerative circuits
- To introduce Sequencing circuits
- To introduce Counter balancing, Synchronizing, circuits

- **Outcomes:**

- Understand the operation of hydraulic circuits and components typically used in industry
- Correctly maintain power units (fixed / variable pumps, reservoirs, filters, strainers and gauges)
- Use hydraulic test equipment to determine the nature and position of faults
- Construct a range of functional hydraulic circuits

- **Unit Content:**

Speed control circuits, Regenerative, Sequencing, Counter balancing, synchronizing, Traverse & Feed circuit, Hydraulic and pneumatic clamping & braking systems, Pneumatic power tools, time delay circuits

- **Content Delivery Methods:** Board, Chalk and talk

Term-Work

Compulsory:

1. A drawing sheet on standard symbols of hydraulic & pneumatic components.

List of Experiments

A) Fluid Machinery-

Minimum 3 experiments from the following

1. Trial on a Pelton wheel.
2. Trial on a Francis/ Kaplan turbine.
3. Trial on a centrifugal pump.
4. Trial on gear pump

B) Fluid Power

Minimum 3 assignments from the following

5. Study of Pressure Control Valves & circuits using pressure control valves
6. Study of flow control valves & circuits using flow control valves
7. Study of direction control valves & check valves circuits.
8. Study of hydraulic power unit & accessories.
9. Demonstration of Minimum of Three hydraulic circuits such as :Basic hydraulic, Regenerative, Speed control (Meter in, meter out & bleed off), Sequencing, Synchronization, traverse & feed, Circuit for riveting machine, automatic reciprocating, fail safe circuit, counter balance circuit, actuator locking, circuit for hydraulic press, unloading circuit, motor breaking circuit.
11. Demonstration on Pneumatic Trainer of Minimum of Three Pneumatic circuits (based on syllabus of UNIT 10 above).

C) Industrial visit to one of the following

- Hydro-electric power station
- Pumping station
- Service station of Earth Moving equipment's.

Note: Students should write visit report based on the observations made during the visit.

• **Text Books**

1. "A text book of Fluid Mechanics & Hydraulic Machines", Dr.R.K. Bansal, Laxmi Publications Ltd.
2. Thermal Engineering R. K. Rajput
3. "Oil Hydraulics- Principle & Maintenance", Majumadar, Tata McGrawHill
4. "Pneumatics- Principle & Maintenance", Majumadar, Tata McGrawHill

• **Reference Books**

1. Theory of Hydraulic Machinery", V.P. Vasandani, Khanna Publishers, Delhi.
2. "Hydraulic Machines", Dr. J. Lal, Metropolitan Book Co. Pvt. Ltd., Delhi.
3. Vickers Manual on Industrial Hydraulics
4. Festo's Manual on Pneumatic Principle, applications
5. "ABC's of Hydraulic Circuits", H L Stewart, (Taraporwala Press)
6. "ABC's of Pneumatic Circuits", H L Stewart, (Taraporwala Press)
7. Hydraulics and Pneumatics' H.L. Stewart –, Industrial Press

Teaching Scheme
Practical: 2 hours a week

Examination Scheme
ICA: 50 Marks

- **Course Objective:**
 - i. To make the students aware with various skills involved in manufacturing & Assembly.
 - ii. To develop skills to operate different machine tools.
 - iii. To make the students aware of limits, fits & tolerance while manufacturing assembly.
 - iv. To make students aware of operation sequence, speed feed selection for different materials & operations
- **Course Outcomes:**
 - i. To create confidence amongst the students in Production / manufacturing activities.
 - ii. Students should get experience about manual skills required to perform machining operations.
 - iii. To create confidence in students while designing limits, fits & tolerances during manufacturing.
 - iv. To create awareness in students regarding time management, work study, method study & tool engineering.

1. A composite job consisting of three components machined from $\Phi 32$ mm MS bar.

(Excluding commercial components) requiring minimum five operations listed below:

1. Turning
2. Drilling
3. Boring
4. Hand tapping
5. Milling
6. Internal & External V-threading
7. Grinding

2. The components of the composite job shall carry at least two specified close tolerance operations. In addition to the above, following operations are to be demonstrated during the term. (These are not to be included in the job operations for term work & exams.)

1. Shaping
2. Slotting
3. Grinding
4. Form Turning
5. Knurling
6. Grooving

4. Journal should contain detailed process sheet of above job.
5. Assessment of Workshop Practice-IV-Term work shall be done for 50 % Work or one major Component & Workshop Practice-V-Term work shall be done for remaining work at the end of T.E. (Mech.) Part II.
6. Practical examination of 6 Hrs. duration having component of 2 to 3 parts.

Note: Material specification for practical work & examination is raw material **Φ32mm MS bar.**

Books:

1. Workshop Technology (Volume II) by Raghuvanshi.
2. Workshop Technology (Volume II) by HajraChowdhary.
3. Workshop Technology (Volume II) by W.A.J.Chapman.

Reference Books:

1. Production Technology by P.C.Sharma.
2. Production Technology – HMT Handbook.
3. Production Technology (Volume II) by Gupte-Patel.
4. HGerling, All about Machine Tools, New Age International, 1995.

Teaching Scheme

Lectures– 3 Hours/week, 3 Credits
Practical – 2 Hour/week, 1 Credit

Examination Scheme

ESE– 70 Marks
ISE –30 Marks
ICA- 25 Marks

Course Introduction:

This course provides an introduction to Internal Combustion Engine. It introduces four stroke and two stroke engine working, also highlights the difference between these two. It briefs introduction about fuel system for SI and CI engine. It focuses on normal and abnormal combustion in SI and CI engine. This course also includes performance parameter and its testing. In this subject student will learn the various engine systems like cooling, lubrication, starting systems etc. It touches to some of the recent advance in the Engine field like Electronic Engine management system, Carbon Credit system, Hybrid vehicles, Alternative fuels etc.

Course Prerequisite:

Student should have knowledge of Basic thermal Principal, Thermodynamics, and Heat Transfer. They should know basic processes and cycles. A sound background of analysis of thermal systems is essential for successful completion of this course.

Course Objectives: During this course, student is expected

1. Distinguish the different types of engine constructions and their thermodynamic principles.
2. Differentiate the constructional details of various fuel systems used in different types of I. C. Engines and calculate major dimensions of carburetor and fuel injection system.
3. Apply the basic knowledge to infer the different methods for enhancing the performance of I. C. engines
4. Correlate the difference in SI and CI engine combustion processes with the design of combustion chambers used in these engines
5. Evaluate the performance parameters of I. C. engines to justify their use in different applications.
6. Categorize different alternative fuels suitable for different engine applications and compare the pollutants formed in these engines and their control methods

Course Outcomes: At the end of this course, student will be able to

1. Recognize and understand the reasons for differences in the construction of different types of internal combustion engines.
2. Understand the reasons for differences among operating characteristics of different engine types and designs
3. Select the appropriate engine for a given application.

4. Conduct performance tests on engines and Compare experimental results with Theoretical predictions.
7. Compare experimental results with theoretical predictions and make proper justifications.

Section I

Unit 1 - Introduction to I. C. Engine No of lectures – 05

- **Prerequisite:** Knowledge of Basic Thermal concepts like Temperature, Pressure, Process, Cycle etc.
- **Objectives:**
 1. To Introduce I. C Engine, its cycle.
 2. To study theoretical and actual cycle of Engine.
 3. To know valve timing and port timing diagram
- **Outcomes:** After completing this unit, student will be able to
 1. Explain working of I C Engine.
 2. Differentiate between 4 stroke and 2 stroke Engine.
 3. Differentiate between Actual and theoretical cycle
- **Unit Content:**
 Introduction, Classification of I.C. Engines, Engine Cycles-Otto and Diesel Cycle, Deviation of actual cycles from air standard cycles, Valve timing diagram for high and low speed engines, Port timing diagram for two strokes S.I. Engines.
- **Content Delivery Methods:** Board, Chalk and talk, PPT.

Unit 2-Fuel System for S. I. Engines No of lectures – 06

- **Prerequisite:** Basic Knowledge of engine fuels, its properties like Ignition Point, Boiling Point, Volatility, etc.
- **Objectives:**
 1. To introduce procedure of mixing air and Fuel.
 2. To know mixture requirement at different load condition
 3. To impart knowledge of design of Carburetor.
- **Outcomes:** After completing this unit, student will be able to
 1. Understand need of mixture preparation.
 2. Explain working of Carburetor.
 3. Determine dimensions of Carburetor.
- **Unit Content:**
 Engine fuel requirements, Mixture requirements, Simple carburetor, and Additional systems in modern carburetor, compensating devices, Calculation of air fuel ratio (exact and approximate methods), Calculation of main dimensions of air and fuel supply (Numerical calculations of main dimensions of carburetor), Electronic Petrol injection system (MPFI).
- **Content Delivery Methods:** Board, Chalk and talk, PPT.

Unit 3-Fuel System for C. I. Engines No of lectures – 05

- **Prerequisite:** Diesel fuel properties, working of some basic components like pump, strainer, hoses, nozzles etc.

- **Objectives:**
 1. To understand working of Fuel System for C. I. Engines.
 2. To know process of spray formation, injection.
- **Outcomes:** After completing of this unit, student will be able to-
 1. Explain the fuel injection system.
 2. Calculate the dimensions of fuel injector nozzle.
- **Unit Content:**

Requirements of fuel injection system for C.I. Engines, Types of injection systems- Individual pump, Common rail and Distributor systems, Unit injector, Types of fuel nozzles- single hole, multi hole, pintle and pintaux, Governing of C.I. Engines, (Numerical on calculations of main dimensions of fuel injection system).
- **Content Delivery Methods:** Board, Chalk and talk, PPT.

Unit 4–Supercharging	No of lectures – 04
• Prerequisite: Working of some basic compressor and its types, basic engine cycle.	
• Objectives: <ol style="list-style-type: none"> 1. To understand working of supercharger and turbocharger. 2. To understand effect of supercharging on thermodynamic cycle. 	
• Outcomes: After completing this unit, student will be able to- <ol style="list-style-type: none"> 1. Explain the type and working of supercharger and turbocharger. 2. Explain limitation of supercharger and turbocharger for SI and CI engine. 	
• Unit Content: <p>Purpose of supercharging, Turbo charging, Thermodynamic cycle of supercharged and turbocharged Engines, Advantages and disadvantages, Limits of supercharging for S.I. and C.I. Engines.</p>	
• Content Delivery Methods: Board, Chalk and talk, PPT, Video	

Section II

Unit 5–Combustion in SI Engine	No of lectures – 05
• Prerequisite: Combustion phenomenon, Heat release process.	
• Objectives: <ol style="list-style-type: none"> 1. To learn stages of combustion in SI engine. 2. To understand the normal and abnormal combustion in SI Engine. 3. To learn knocking in SI engine. 	
• Outcomes: After completing this unit, student will be able to- <ol style="list-style-type: none"> 1. Explain the combustion in SI engine. 2. Parameter affecting on normal and abnormal combustion. 	
• Unit Content: <p>Stages of combustion in S.I. Engines, Ignition lag, Flame propagation, Factors affecting flame speed, Abnormal combustion, Influence of operating variables on knocking, Octane number, HUCR, Requirements of combustion chambers of S.I. Engines and its types.</p>	

- **Content Delivery Methods:**
Board, Chalk and talk, PPT, Video

Unit 6–Stages of combustion in C.I. Engines **No of lectures – 05**

- **Prerequisite:** Combustion in phenomenon, Heat release process, Properties of diesel fuel.
- **Objectives:**
 1. To learn Stages of combustion CI engine.
 2. To know abnormal combustion in CI engine.
 3. To understand difference between SI engines knocking and CI engine knocking.
- **Outcomes:** After completing this unit, student will be able to
 1. Explain Stages of combustion CI engine.
 2. Explain the knocking in CI engine.
- **Unit Content:**

Stages of combustion in C.I. Engines, Delay period, Factors affecting delay period, Abnormal Combustion-Diesel knock, Influence of engine design and operating variables on diesel knock, Requirements of combustion chambers for C.I. Engines and its types. Comparison of abnormal combustion in S I and C I Engines. Cetane number, Antiknock Agent.

- **Content Delivery Methods:** Board, Chalk and talk, PPT.

Unit 7 –Engine performance **No of lectures – 05**

- **Prerequisite:** Basic concepts like Energy, Power, Engine working, Principle of orifice etc.
- **Objectives:**
 1. To understand performance parameter of Engine
 2. To learn heat balance sheet of Engine.
 3. To know Morse test of Multi cylinder engine
- **Outcomes:** After completing this unit, student will be able to-
 1. Calculate the performance parameters of the engine.
 2. Draw heat balance sheet.
- **Unit Content:**

Performance parameters, Measurement of performance parameters like torque, power, and Volumetric Efficiency, Mechanical Efficiency, bsfc, Brake and Indicated Thermal efficiencies. Heat Balance Sheet. (Numerical on engine Performance and Heat Balance Sheet)

- **Content Delivery Methods:**
Board, Chalk and talk

Unit 8–Alternative Fuels and Engine Emission **No of lectures – 05**

- **Prerequisite:** Regular fuels of Engine, Basic reactions of fuel.
- **Objectives:**
 1. To find alternative fuel for I C Engine.
 2. To understand pollution control devices.
 3. To know Pollution norms.

- **Outcomes:** After completing this unit, student will be able to
 1. Explain alternative fuels for I C Engine.
 2. Explain the basic pollutants from the engine.
 3. Explain the pollution control devices.

- **Unit Content:**

Various alternative fuels and their suitability for I. C. Engines. S.I. Engine emissions (HC, CO, NOx) Control methods, Catalytic converters. C.I. Engines Emissions (CO, NOx, Smog, Particulate), Control methods, EGR, Bharat Norms III and IV

- **Content Delivery Methods:** Board, Chalk and talk
-

TERM WORK

Term work (minimum 3 from group A and B, and all from Group C)

Group A (Study Group)

- i. Constructional details of I.C. engines
- ii. Study of Engine Cooling and Lubrication system
- iii. Study of Ignition systems and Starting systems
- iv. Study of fuel system for S.I. and C. I. engines

Group B (Trial Group)

- i. Constant Speed Test (Influence of load on performance)
- ii. Morse Test
- iii. Heat balance sheet
- iv. Test on computer controlled I.C. Engine/ Variable Compression Ratio Engine
- v. Measurement of exhaust emissions of SI / CI engines

Group C

- i. Assignment on recent trends in IC Engine.
- ii. **Visit to an engine manufacturing company / repairing unit.**

Text books:

- 1 Internal Combustion Engines, Mathur and Sharma, DhanpatRai.
- 2 Engineering Fundamentals of the Internal Combustion Engine, Willard Pulkrabeck, Prentice Hall
- 3 Internal Combustion Engines, R. K. Rajput, Dhanpat Rai Publications.
- 4 Internal Combustion Engines, V.Ganesan, McGraw Hill.

Reference books:

- 1 Internal Combustion Engines Fundamentals, John Heywood, McGraw Hill
- 2 Internal Combustion Engines Emission and Control, EranSher, SAE
- 3 Engine Emissions Purandir, Narosa
- 4 Alternative Fuels, S.S Thipse, Jaico
- 5 Internal Combustion Engines Fundamentals, Maleev, McGraw Hill
- 6 Internal Combustion Engines Vol. 1 and Vol. 2, C.F Taylor, MIT Press
- 7 Internal Combustion Engines, *Obert*, McGraw Hill
- 8 Internal Combustion Engines: Applied Thermo sciences, Fergusson & Kirkpatrick, Wiley.
- 9 SAE Handbook, SAE, SAE.

Solapur University, Solapur
T.E. (Mechanical Engineering) Semester-II
ME323 (CAD, CAM & CAE)

Teaching Scheme

Lectures– 3 Hours/week,
Practical – 2 Hour/week,

Examination Scheme

ESE– 70 Marks
ISE –30 Marks
ICA- 25 Marks

Course Introduction:

Now a day's industries cannot survive worldwide competition unless they introduce new products with better quality, at lower cost, and with shorter lead time. Accordingly, they have tried to use the computer's huge memory capacity, fast processing speed, and user-friendly interactive graphics capabilities to automate and bind together thus reducing the time and cost of product development and production. Computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) are the technologies used for this purpose during the development of mechanical product with best quality and lowest cost. Students must have knowledge of CAD, CAM, and CAE. Therefore, this course contains syllabus related to CAD, CAM and CAE activities. The syllabus is divided into two sections, each section contains four chapters.

Course objectives:

- i. To create an awareness regarding Geometric Modeling activities in Industries.
- ii. To create an awareness regarding CAM activities in Manufacturing Industries.
- iii. To develop part programming capabilities for CNC machines.
- iv. To empower students to learn advanced tools in Automation.
- v. To utilize modern tools for design, analysis and manufacturing activities.

Course Outcomes: After completion of the course the students will be able to:-

1. Implement concept of modern product cycle.
2. Apply knowledge of the fundamental mathematical theories for geometric Transformation.
3. Create the geometric model using CAD modeling software.
4. Apply CAE analysis tool for simulation of 1-D component.
5. Implement the concept of GT and CAPP.
6. Apply the concept of FMS.
7. Select appropriate tooling for CNC machine.
8. Develop part programming to operate CNC milling & turning machine to manufacture a Mechanical part.

Section-I

Unit 1: Introduction to CAD / CAM/CAE

No. of Lectures: 03

- **Prerequisite:** Traditional design and manufacturing phages, Knowledge of manufacturing and machining processes, etc.

- **Objectives:**

1. To understand the modern product cycle and CAD/CAM/CAE.
2. To identify input/output devices.
3. To understand the functions of graphics software.

- **Outcomes:** After completing this unit, students will be able to-

1. Implement concept of modern product cycle.
2. To select appropriate CAD / CAM/CAE software for design, analysis and manufacturing Activities.

- **Unit content:**

Product Cycle and CAD / CAM/CAE, Advantages of CAD / CAM/CAE, Hardware used for CAD/CAM/CAE system, List of input/output devices, Functions of Graphics Software, Selection of CAD / CAM/ CAE Software.

- **Content Delivering Methods:** Board, Chalk & talk and Power Point Presentation.

Unit 2: Computer Graphics and Geometric Modeling

No. of Lectures: 08

- **Prerequisite:** Knowledge of basic transformation command from AutoCAD software, Knowledge of engineering graphics and basic curves etc.

- Objectives:

1. To understand mathematical method of geometric transformation.
2. To understand the use of homogeneous transformation.
3. To study and implement concept of CAD/CAM data exchange
4. To understand different types of geometric modeling and their use in industry

- **Outcomes:** After completing this unit, students will be able to-

1. Apply knowledge of the fundamental mathematical theories for geometric Transformation.
2. Create the geometric model using CAD modeling software.

- **Unit content:**

Geometric Transformations, Homogeneous Coordinates, Windowing and Viewing Transformations, Coordinate Transformations, Standardization in Graphics Software, CAD / CAM Data Exchange. Introduction to Geometric Modeling and its types, Parametric representation of basic entities like line and circle, Introduction to basic curves - Bezier, B-Spline, NURBS, concept of CSG and Boolean operations, Feature based modeling.

- **Content Delivering Methods:** Board, Chalk & talk, Power Point Presentation, Animations.

• Objectives:

Objectives:

1. To understand General steps of the Finite Element Method.
2. To derive the stiffness matrix for the 1-D bar element.
3. To select appropriate simulation or analysis software

- **Outcomes:** After completing this unit, students will be able to-
 1. Implement General steps of the FEM
 2. Carry out Structural and thermal analysis of 1-D bar elements

- **Unit content:**

Definition, Types of analysis, terms used in FEM, types of nodes and elements, General Steps of the FEM, Structural and thermal analysis of 1-D bar elements, Introduction to latest FEA software

- **Content Delivering Methods:** Board, Chalk & talk, Power Point Presentation, Animations.

Unit 4: Automation

No. of Lectures: 05

- **Prerequisite:** Traditional manufacturing phases, Knowledge of manufacturing and machining centers and processes, etc.
- **Objectives:**
 1. To understand the management approach of Group Technology and part classification based on various methods.
 2. To study and understand the concept of computer aided process planning and its types.
 3. To understand computer integrated manufacturing and its advantages.

- **Outcomes:** After completing this unit, students will be able to-

1. Implement concept of group technology for making part family.
2. Develop computer aided process plan for simple mechanical component.

- **Unit content:**

Concept & Definition of Automation, Types, Advantages and Limitations of Automation, Automation and CAD/CAM, CIM and CAD / CAM, Group Technology, part family, Classification and Codification System, Merits and Demerits of Group Technology, CAPP, Retrieval and Generative type of CAPP, MRP, concept of ERP, concept of Rapid Prototyping,

- **Content Delivering Methods:** Board, Chalk & talk, Power Point Presentation, Animations.

Unit 5: Fundamentals of NC system

No. of Lectures: 06

- **Prerequisite:** Traditional machining processes, Knowledge of manufacturing and machining centers and processes, etc.

- **Objectives:**

1. To apply steps of NC system.
2. To demonstrate concept of flexible manufacturing system.
3. To explain types of NC system.

- **Outcomes:** After completing this unit, students will be able to-

1. Implement steps of NC system.
2. Demonstrate concept of flexible manufacturing system.

- **Unit content:**

Evolution of NC and Retrofitting, Elements of NC Manufacturing System, concept of work zero and machine zero, Types of NC systems, Structure, Drives and other devices, Steps in NC Manufacturing, Advantages and Disadvantages of NC Technology, Flexible Manufacturing System (FMS), Elements of FMS, Applications of FMS, Merits and Demerits in FMS.

- **Content Delivering Methods:** Board, Chalk & talk, Power Point Presentation, Animations.

Unit 6: CNC- DNC Technology **No. of Lectures: 03**

- **Prerequisite:** Knowledge of machining processes, Knowledge of manufacturing and Machining centers etc.

- **Objectives:**

1. To classify computerized numerical control system.
2. To describe Direct Numerical Control System.
3. To understand the concept of Adaptive control system.

- **Outcomes:** After completing this unit, students will be able to-

1. Apply concept of adaptive control system.

- **Unit content:**

Classification of CNC machine tools, CNC controllers, Features and Advantages of CNC, Adaptive Control, Advantages of Adaptive Control, Direct Numerical Control, Types of Direct Numerical Control, Advantages and Disadvantages of Direct Numerical Control.

- **Content Delivering Methods:** Board, Chalk & talk, Power Point Presentation, Animations.

Unit 7: Tooling for CNC Machines **No. of Lectures: 03**

- **Prerequisite:** Knowledge of traditional machine tools, Knowledge of selection of correct tools, Knowledge of machine tools and processes etc.

- **Objectives:**

1. To design automatic tool changer and tool holding system.
2. To design modular tooling system and tool magazine.
3. To demonstrate tool setting in CNC

- **Outcomes:** After completing this unit, students will be able to-

1. Design the tooling required for CNC and VMC machines.

- **Unit content:**

Tool holders, Adapters, Tool magazines, Automatic tool changers, Pallets, Tool setting, Modular tooling.

- **Content Delivering Methods:** Board, Chalk & talk, Power Point Presentation, Animations.

Unit 8: Manual Part Programming **No. of Lectures: 08**

- **Prerequisite:** Knowledge of traditional machine tool, Knowledge machine tools and processes etc

- **Objectives:**

1. To implement G-code and M-code for development of part program for CNC Lathe and Milling machines.
2. To apply concept of machine zero and work zero.
3. To apply concept of subprogram, Do-loop and canned cycle.

- **Outcomes:** After completing this unit, students will be able to-

1. Develop part program for any part drawing.

- **Unit content:**

Principles of an NC Program, Word Address Format (WAF), Machining Formulas, Tool Length and Cutter Diameter Compensation, Canned Cycles for Lathe, Milling and Drilling, Introductory treatment of Subprogram, Subroutines, DO Loop, Macros.

- **Content Delivering Methods:** Board, Chalk & talk, Power Point Presentation, Animations.

- **List of Experiments**

1. Assignment on Modeling & Drafting of any two mechanical components.
2. Assignment on Modeling of simple Assembly of around 3-5 machine components.
3. Assignment on FEA based structural analysis of simple mechanical component.
4. Assignment on FEA based thermal analysis of simple mechanical component.
5. Part programming of one job using CAM software or Programming and manufacturing of one job on CNC lathe or CNC Milling machine.
6. Assignment based on Industrial visit and its report based on CNC/FMS/Automation.

Text books:

1. Introduction to CAD/CAM, Rao P.N., -Tata McGraw Hill Publishing Co.
2. Automation, Production Systems and Computer Integrated Manufacturing, Grover M.P.- Prentice Hall of India
3. Numerical Control -Computer Aided Manufacturing, Kundra, Rao, Tiwari- TM Hill Pub.Co.
4. CAD/CAM/CAE, Chougule N.K.- SCITECH Publications (I) Pvt. Ltd.
5. CAD/CAM/CIM, P. Radhakrishnan.

Reference Books:

1. Theory and Practice, Ibrahim Zeid – CAD/CAM - Tata McGraw Hill Publishing Co.
2. CAD/CAM - Mastering, Ibrahim Zeid --Tata McGraw Hill Publishing Co.
3. Computer Integrated Design and Manufacturing, D.D. Bedworth, M.R Henderson & P.M. Wolfe- -Tata McGraw Hill Pub. Co.
4. CAD/CAM Theory and Concepts, Kuldeep Sareen, C. Grewal, -S.Chand & Co.Ltd.
5. Computer Graphics by Hearn and Baker.

सोलापूर विद्यापीठ

॥ विद्या संपदता ॥

Solapur University, Solapur

T.E. (Mechanical Engineering) Semester-II

Professional Elective-IV Course-III

ME325 Tool Engineering

Teaching Scheme

Lectures – 3 Hours/week, 3 Credits

Tutorial – 2 Hour/week, 1 Credit

Examination Scheme

ESE – 70 Marks

ISE – 30 Marks

ICA- 25 Marks

• Course Introduction:

This course seeks to provide an introduction to tool engineering and discusses various procedures, requirements, tooling methods. It introduces engineering materials and describes the different kinds of tools, jig & fixture used in industries. A further content explains in detail the design of press tool draw tool jig & fixture as well as tool nomenclature and geometry.

• Course Prerequisite:

Student shall have knowledge of function of press tool and draw tool, cutting tools and theory of metal cutting etc.

• Course Objectives:

1. To enlighten the students about the basics in mechanics of cutting & non cutting operations.
2. To explain the concepts, principles & practices in designing various tools.
3. To explain the students about the basics in economics of cutting & non cutting operations.
4. To explain the concepts, principles & practices in designing various tooling.

• Course Outcomes:

1. Students are able to do the calculations involved in the mechanics & economics of operations.
2. Students are able to design & draw the tools & tooling for the given situation & operation.
3. Students are able to conceive & develop solutions, devices, contrivances to overcome present problems of the real world.

Section I

Unit 1—Theory of metal cutting.

No of lectures – 03

- Prerequisite:** Knowledge of trigonometric as well as subject like mathematics and applied mechanics and strength of material.

• Objectives:

1. To work on theory of metal cutting to decide the power requirement.
2. To study of cutting fluid tool material and tool dynometer.

• Outcomes: After completing this unit, student will be able to

1. Explain/ the power requirement in the metal cutting
2. Select the proper tool material and cutting fluid in the metal cutting.

• Unit Content:

- a) Orthogonal cutting & oblique cutting, Force analysis for orthogonal cutting
- b) Chip formation, types of chips, wedge action, shear plane angle, cutting ratio, shear stress & strain, velocity relationship, Merchants theory, Merchants circle & force relationship
- c) Tool dynamometers- types, applications.
- d) Machinability Index, factors affecting machinability
- e) Tool life- Flank & crater wear, effect of variables on tool life, Taylor's equation of tool life
- f) Coolants- Heat generation, types of coolants.
- g) Tool Materials

- **Content Delivery Methods:** Board, Chalk and talk

Unit 2- Press Tools

No of lectures – 06

- **Prerequisite:** Knowledge of press tool and draw tool forming process

- **Objectives:**

To carry out design of press tool & draw tool.

- **Outcomes:** After completing this unit, student will be able to design.

Design of press tool & draw tool.

- **Unit Content:**

- Elements of press tools, types of dies, types of operations.
- Design of die for cutting operation, mechanics of shearing, cutting force estimation, punch & die clearance, stock strip lay out, design of punches & die block functioning & place of other elements. Centre of pressure, selection of die set & press
- Design of drawing dies, determination of blank size, no. of draws, stage wise component drawing, drawing radii, clearance, estimation of drawing force, time & power
- Types of Bending dies, related estimates.

- **Content Delivery Methods:** Board, Chalk and talk

Unit 3- Geometry & Nomenclature of cutting tools

No of lectures – 06

- **Prerequisite:** Design of cutting tool and material for cutting tool

- **Objectives:**

- To know about Geometry of cutting tool
- To know about use of various angle and its applications

- **Outcomes:** After completing this unit, student will be able to

- Decide the cutting tool for particulars material
- Decide the importance of various angle on cutting tool

- **Unit Content:**

- Single point cutting tools- Geometry & Tool signature as per ASA system & ORS system, effect of geometry on tool life, cutting force, surface finish.
- Types of Multipoint cutting tools like Milling cutters, Drills, Broaches, Reamers

- **Content Delivery Methods:** Board, Chalk and talk

Unit 4- Design of Jigs & Fixtures.

No of lectures – 05

- **Prerequisite:** Concepts of engineering drawing, machine drawing and machine design.

- **Objectives:**

- To decide the locating devices.
- To decide clamping devices.

- **Outcomes:** After completing this unit, student -

- Should design jog & fixture.
- Should design jig and fixture fool proffer.

- **Unit Content:**

Introduction, necessity & applications, basic concepts

- Location & clamping systems- Principle, types, applications

- Design of Jigs- Principles of Jig design, types & applications, types of bushes &selection, use of standard parts, design procedure & drawing.

- Design of Fixtures- Principles of Fixture design, standard elements & types of fixtures, design of milling fixtures.

- **Content Delivery Methods:** Board, Chalk and talk

Section II

Unit 5– Economics of Tooling

No of lectures – 03

- **Prerequisite:** Knowledge of engineering management and industrial engineering

- **Objectives:**

To learn about cost profit EOQ and tool replacement policy

- **Outcomes:** After completing this unit, student will be able to

To calculate cost and after adding profit decide the sales prize.

- **Unit Content:**

- Elements of cost: methods of depreciation
- Estimation of total cost & sales price
- Break- even analysis for equipment selection
- Economics of small tool selection, equipment replacement
- Economic Order Quantity for Batch production

- **Content Delivery Methods:** Board, Chalk and talk

Term Work:

(Minimum Six of the following)

1. Study of cutting tools: Classification, Nomenclature, and Geometry
2. Exercise on Theory of metal cutting.
3. Demonstration of Lathe tool & Drill tool dynamometer & calculation of cutting forces.
4. Exercises on Mechanics & Economics of Machining & Tooling
5. Sheet on Press tool design- Cutting & drawing operation, necessary calculation
6. Sheet on Jig design- Exercise & drawing
7. Sheet on Fixture design- Exercise & drawing
8. Industrial visit

- **Text Books:**

1. Text Book of Production Engineering – P.C.Sharma (S.Chand Publication)
2. Machine Tool Engineering – G.R. Nagpal (khanna Publication)
3. Press Tools – P.H.Joshi (S.Chand Publication)
4. Jigs & Fixtures - P.H.Joshi (S.Chand Publication)

- **Reference Books:**

1. Metal cutting Theory & tool design- Mr. Arshinnov (MIR Publication)
2. Fundamentals of Tool design- ASTME Publication
3. Tool design – Donaldson (TMH Publication)
4. Jig & Fixture Design – Kempster (ELBS Publication)
5. Die Design Fundamentals-J.R.Paquin

T.E. (Mechanical) Part – II
ME328 Workshop Practice – V

Teaching Scheme

Practical- 2hrs/week

Practical Exam- duration- 6 Hrs.

Examination Scheme

ICA- 25 Marks

POE -50Marks

Course Objective:

- 1) To make the students aware with various skills involved in manufacturing & Assembly.
- 2) To develop skills to operate different machine tools.
- 3) To make the students aware of limits, fits & tolerance while manufacturing assembly.
- 4) To make students aware of operation sequence, speed feed selection for different materials & Operations

Course Outcomes:

- 1) To create confidence amongst the students in Production / manufacturing activities.
- 2) Students should get experience about manual skills required to perform machining operations.
- 3) To create confidence in students while designing limits, fits & tolerances during manufacturing.
- 4) To create awareness in students regarding time management, work study, method study & tool Engineering

1. A composite job consisting of three components machined from $\Phi 32$ mm MS bar.

(Excluding commercial components) requiring minimum five operations listed below:

1. Turning 2. Drilling 3. Boring 4. Hand tapping 5. Milling 6. Internal & External V-threading 7. Grinding

2. T. E. (Mechanical Engineering) Syllabus w.e.f. 2016-17 2. The components of the composite job shall carry at least two specified close tolerance operations. In addition to the above, following operations are to be demonstrated during the term. (These are not to be included in the job operations for term work & exams.)

1. Shaping 2. Slotting 3. Grinding 4. Form Turning 5. Knurling 6. Grooving

3. Journal should contain detailed process sheet of above job.

4. Assessment of Workshop Practice-IV-Term work shall be done for 50 % Work or one major Component & Workshop Practice-V-Term work shall be done for remaining work at the end of T.E. (Mech.) Part II.

5. Practical examination of 6 Hrs. duration having component of 2 to 3 parts.

Note: Material specification for practical work & examination is raw material Φ32mm M.S. bar.

Books:

1. Workshop Technology (Volume II) by Raghuvanshi.
2. Workshop Technology (Volume II) by HajraChowdhary.
3. Workshop Technology (Volume II) by W.A.J.Chapman.

Reference Books:

1. Production Technology by P.C.Sharma.
2. Production Technology – HMT Handbook.
3. Production Technology (Volume II) by Gupte-Patel.
4. H Gerling, All about Machine Tools, New Age International, 1995.

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

Name of the Faculty: Science & Technology

CHOICE BASED CREDIT SYSTEM

Syllabus: Mechanical Engineering

Name of the Course: B.E. IV (Sem.–VII & VIII)

(Syllabus to be implemented from w.e.f. June 2019)

B.E. (Mechanical Engineering) Semester-1
ME412 Refrigeration and Air Conditioning

Teaching Scheme

Lectures – 3 Hours/week, 3 Credits

Practical –

Examination Scheme

ESE– 70 Marks

ISE - 30 Marks

ICA- 25 Marks

POE- 25 Marks

Course Introduction:

This course deals with study of various refrigeration processes and refrigeration cycles such as Air refrigeration cycle, Vapour Compression cycle, Vapour absorption cycle. It also covers properties of refrigerants and various alternative refrigerants. In second part study of psychometric processes and its analysis for producing required air conditions are dealt. Further it deals with human comfort requirements and study of air distribution systems.

Course Prerequisite:

Student should have knowledge of basic concepts of thermodynamics and laws of heat transfer along with equations to calculate heat flow rate by various modes of heat transfer.

Course Objectives: During this course, student is expected to

1. Familiarize with the terminology associated with refrigeration systems and air conditioning systems.
2. To understand basic refrigeration processes.
3. To understand basics of psychrometry and practice of applied psychrometric.
4. To acquire the skills required to design and analyse refrigeration and air conditioning components and systems.

Course Outcomes: At the end of this course, student will be able to

1. Explain Basic Refrigeration Processes
2. Analyze and Calculate Performance of Refrigeration Systems
3. Select proper Refrigerant for specific application
4. Define and Calculate Psychometric properties of air using chart and tables
5. Decide and Analyze Psychometric process for obtaining required air conditions
6. Explain Comfort chart and factors affecting human comfort.
7. Design Air distribution System

Section I

Unit 1. Basic Refrigeration Cycles	No of lectures – 10 hrs
---	-------------------------

- **Prerequisite:** Basics of thermodynamics.
- **Objectives:**
 1. To Study Various Refrigeration Cycles.
 2. To Analyze and Find Performance of Refrigeration Cycles.
- **Outcomes:**

After completing this unit, student will be able to

 1. Define Refrigeration and its Units.
 2. Explain Working of Various Refrigeration Cycles and Calculate its Performance.
- **Unit Content:**

Refrigeration, Units of refrigeration, Reversed Carnot cycle with vapour as refrigerant, Vapour compression cycle, Sub cooling, Superheating, Liquid – Suction heat exchanger, Analysis and Performance calculations of above cycles. Actual vapour compression cycle. (Numerical Treatment). Air Refrigeration Systems, Bell Coleman Cycle (B.C.C), Calculation of C.O.P., Advantages and Disadvantages of B.C.C. (Numerical Treatment). Air Craft Refrigeration-Necessity, Simple, Boot Strap, Regenerative and Reduced ambient systems. (Theoretical Treatment).
- **Content Delivery Methods:** Board, Chalk and Talk.

Unit 2– Multi Pressure Systems	No of lectures – 3 hrs
---------------------------------------	------------------------

- **Prerequisite:** Basic Refrigeration cycles
- **Objectives:**
 1. To Study Multistage Refrigeration Systems.
 2. Compare with Simple V.C.C.
- **Outcomes:**

After completing this unit, student will be able to

 1. Explain Necessity of Multistage Refrigeration Systems.
 2. Explain Types of Multistage Refrigeration Systems.
- **Unit Content:**

Introduction, Multistage compression, Flash gas removal, Flash inter cooling, Complete Multi stage system, Multi evaporator systems (Descriptive Treatment).
- **Content Delivery Methods:** Board, Chalk and Talk

Unit 3– Refrigerants

No of lectures – 3 hrs

- **Prerequisite:** Properties of pure substances

- **Objectives:**

1. To Study Various Types & Properties of Refrigerant.
2. To Study Effect of Refrigerant on Environment.

- **Outcomes:**

After completing this unit, student will be able to

1. Select Refrigerant for Specific Application.
2. Explain Effect of Refrigerant on Environment.

- **Unit Content:**

Classification, Desirable Properties, Nomenclature of Refrigerants, Selection of refrigerant, Secondary refrigerants, Effect on Ozone depletion and Global warming, Total equivalent warming impact (TEWI), Alternative Refrigerants.

- **Content Delivery Methods:** Board, Chalk and Talk

Unit 4– Vapour Absorption Systems

No of lectures – 4 hrs

- **Prerequisite:** Properties of pure substances

- **Objectives:**

1. To Study Vapour Absorption Systems
2. To Find its Performance.

- **Outcomes:**

After completing this unit, student will be able to

1. Explain Various Types of Vapour Absorption Systems.
2. To Find C.O.P. of Ideal Vapour Absorption system.

- **Unit Content:**

Introduction, Simple Ammonia-Water Vapour absorption system, Practical Ammonia-Water Vapour absorption system, Comparison between Vapour Absorption and Vapour Compression system, COP of ideal Vapour Absorption System, Electrolux refrigerator, Lithium Bromide Absorption system. New Mixtures for Vapour Absorption System.

- **Content Delivery Methods:** Board, Chalk and Talk, Animations.

Section II

Unit 5– Psychrometry	No of lectures – 7 hrs
-----------------------------	------------------------

- **Prerequisite:** Basics of Thermodynamics
- **Objectives:**
 1. To Study Properties of Moist Air.
 2. To Study Various Psychometric Processes.
- **Outcomes:**

After completing this unit, student will be able to

 1. Find Properties of Moist Air.
 2. Analyze Various Psychometrics Processes.
- **Unit Content**

Moist air as a working substance, Psychometrics properties of air, Use of psychometric tables and Charts, Processes, Combinations And Calculations, ADP, Coil condition line, Sensible heat factor, Bypass factor, Air Washer and it's applications. (Numerical Treatment)

Content Delivery Methods: Board, Chalk and Talk.

Unit 6– Heating and Cooling Load Calculations	No of lectures – 6 hrs
--	------------------------

- **Prerequisite:** Heat transfer
- **Objectives:**
 1. To Study Various Loads on Refrigeration Systems.
 2. To Analyze Psychometric Processes for obtaining required Indoor Conditions.
- **Outcomes:**

After completing this unit, student will be able to

 1. Calculate Loads on Refrigeration system.
 2. Decide and Analyze Psychometric Process
- **Unit Content:**

Representation of actual air conditioning process by layout and on Psychometric chart.
Load analysis by RSHF, GSHF, Enumeration and brief explanation of the factors forming load on refrigeration and air conditioning systems. (Numerical Treatment).
- **Content Delivery Methods:** Board, Chalk and Talk.

Unit 7– Comfort Conditions and Air Distribution Systems

No of lectures – 4 hrs

• Prerequisite:

Thermodynamics and Fluid Mechanics

• Objectives

1. To Study Human Comfort requirements and Comfort Charts.

2. To Study Air Distribution Systems.

• Outcomes:

After completing this unit, student will be able to

1. Explain Comfort Requirements for human.

2. Explain Various Air Distribution Systems.

• Unit Content:

Thermal exchange between human body and environment, Factors affecting comfort, Effective temperature Comfort Chart, Ventilation requirements. Duct classification, Duct material and construction, Equivalent diameter of a circular duct or rectangular duct, Duct design methods, losses in duct. (Theoretical Treatment).

Content Delivery Methods: Board, Chalk and Talk.**Unit 8– Introduction to Cryogenics**

No of lectures – 3 hrs

• Prerequisite: Thermodynamics**• Objectives:**

1. To Study Methods of producing low temperatures.

2. To Study Applications of Cryogenics.

• Outcomes:

After completing this unit, student will be able to

1. Explain Methods used to produce low temperatures.

2. Explain Applications of Cryogenics.

• Unit Content:

Introduction, Limitations of vapour compression systems for the production of low temperature, Cascade Refrigeration System, Claude System and Linde System for liquefaction of air. Applications of Cryogenics. (Theoretical Treatment).

Content Delivery Methods: Board, Chalk and Talk**• Term Work:****Group 1 (Study, Demonstration of minimum three assignments on following topics)**

1. Study of Refrigeration methods
2. Study of Refrigeration Equipments
3. Study of Refrigeration Systems–Domestic refrigerator, Split air conditioner, Ice Plant, Deep freezer etc.
4. Study of charging, leak testing of refrigeration systems
5. Study of nonconventional refrigeration systems

Group II (Minimum four experiments from following)

1. Trial on Refrigeration primer / bench
2. Trial on Air conditioning tutor
3. Trial on mini ice plant
4. Trial on Vapour Absorption system
5. Trial on Heat Pump
6. Trial on Vortex tube

Group III

1. Visit to Refrigeration plant or Central Air Conditioning plant
- 2.
3. Performance evaluation of any one trial of Group-II by using MATLAB/C Programming

• Text Books:

1. 'Refrigeration & Air Conditioning' by C. P. Arora
2. 'Refrigeration & Air Conditioning' by Arora & Domkundwar
3. 'Refrigeration and Air-conditioning' by S. N. Sapali

• Reference Books:

1. 'Principles of Refrigeration 'by Roy J Dossat
2. 'Air Conditioning Applications & design' by W.P.Jones
3. 'Refrigeration & Air Conditioning 'by Stocker

B.E. (Mechanical Engineering) Semester-I

ME414 (C): Professional Elective-V

Automobile Engineering

Teaching Scheme

Lectures– 3Hours/week, 3 Credits

Practical – 2Hour/week, 1 Credit

Examination Scheme

ESE–70 Marks

ISE –30Marks

ICA-25 Marks

OE-25 Marks

Course Introduction:

There is all round development in the field of design and manufacture of automobile. This has resulted in vast improvement in their efficiency, comfort and safety. There is consequential tremendous increase in production and use of automobiles worldwide. This has opened the job opportunities for Mechanical engineers in Automobile sector.

Course Prerequisites:

4. Knowledge of elementary mathematics,
5. Basic knowledge of various core subjects like Theory of Machines, Manufacturing Process , Design engineering, Fluid Mechanics and Electrical Engineering, Engineering materials

Course Objectives: During this course, a student is expected to

1. Study basic principles of actual automobile systems
2. Study important systems in an automobile
3. Study recent and modern trends in automobile sector
4. To make the student conversant with automobile safety, electrical system
5. To make students aware about the entrepreneurial opportunities in automobile engineering field.

Course Outcomes: At the end of this course, student will be able to

1. Demonstrate & explain various systems in an automobile
2. Describe importance and features of different elements like axle, differential, brakes, steering, suspension, wheel balancing etc.
3. Explain principle of operation, construction and applications of various sensors used in modern automobile and understand electric vehicles, hybrid electric vehicles and solar

Section I

UNIT 1. Introduction to Automobiles:	04
<ul style="list-style-type: none">• Prerequisite: Knowledge of Materials• Objectives:<ol style="list-style-type: none">1. To study different layouts of an Automobile.2. To study different types of body and its construction of an Automobile.• Outcomes:<p>After completing this unit, student will be able to</p><ol style="list-style-type: none">1. Apply the knowledge of different layouts of an Automobile2. Apply the knowledge of different types of body and its construction of an Automobile	
Unit Content: Classification of automobiles. Major automobile components and their functions. Types of vehicle layouts- Front engine rear wheel drive, Front engine front wheel drive, Rear engine rear wheel drive and All wheel drive, Types of automotive bodies and Body construction materials.	
<ul style="list-style-type: none">• Content Delivery Methods: 1. Chalk and Board ,Demonstrations PPT and Videos	
UNIT 2. Performance of Automobiles:	05
<ul style="list-style-type: none">• Prerequisite: Basic Knowledge of Mathematics and Strength of Materials.• Objective<ol style="list-style-type: none">1. To study different parameters of performance of Automobile2. To study performance curve of an automobile.• Outcomes:<p>After completing this unit, student will be able to</p><ol style="list-style-type: none">1. Solve the problems related to performance of an Automobile2. Apply the knowledge of performance curve of an automobile.	
Unit Content: Resistance to vehicle motion- Air, Rolling and Gradient resistance., Acceleration, Grade ability and draw bar pull., Traction and Tractive effort., Power required for vehicle propulsion. (Numerical	
Content Delivery Methods: Chalk and Board, Demonstrations PPT and Videos	
UNIT 3. Transmission System:	08
<ul style="list-style-type: none">• Prerequisite: Knowledge of Materials, Friction, Toothed gear design.• Objectives:<ol style="list-style-type: none">1. To study the principles of various transmission components.2. To study characteristics and classification of various transmission components and Systems.3. To study construction of wheels and tyres.• Outcomes:<p>After completing this unit, student will be able to</p><ol style="list-style-type: none">4. Apply the principle on various transmission components5. Select the suitable transmission components and Systems.6. Understand the construction of wheels and tyres.	
Unit Content: Necessity of transmission system, Automobile clutch- requirements, types & functions of Single plate, Multi-plate and Centrifugal clutches. Fluid flywheel. Types of automotive gearboxes- sliding mesh, Constant mesh and Synchromesh gearbox. Overdrive, Principle of operation of automatic transmission, Torque converter, Propeller shaft, Universal and slip joint, Final drive and its types, Differential, Construction and types of rear axles, Introduction to wheels and tyres.	

- **Content Delivery Methods:**
 1. Chalk and Board
 2. Demonstrations
 3. PPT and Videos

UNIT 4. Automobile Electricals:

03

- **Prerequisite:** Basic principles of Electrical Engineering.
- **Objectives:**
 7. To study the principles of various Electrical systems and accessories.
 8. To study construction and working of various Electrical systems and accessories.
- **Outcomes:**

After completing this unit, student will be able to

 9. Apply the principle on various Electrical systems and accessories

Understand the construction of and working of various Electrical systems and accessory

Unit Content:
Automotive batteries-construction and working of lead acid battery, Head light, Electric horn, Electric fuel Gauge- thermostatic & balancing coil type, Wiper, side indicator circuit, Speedo meter.

- **Content Delivery Methods:**
 1. Chalk and Board
 2. Demonstrations
 3. PPT and Videos

Section II

UNIT 5. Steering System:

06

- **Prerequisite:** Knowledge of Materials, Principle of steering, Friction, Toothed gear design.
- **Objectives:**
 1. To understand steering layout various types of steering gear boxes
 2. To understand steering geometry, wheel alignment
 3. To understand Power steering
- **Outcomes:**

After completing this unit, student will be able to

 1. Get basic knowledge of steering layout, steering geometry, wheel alignment, wheel alignment And methods to correct it
 2. Get basic knowledge of various power steering.

Unit Content: Function of steering, Steering system layout, Automotive steering mechanism –Ackerman and Devis, Types of steering gear boxes, Condition for true rolling, Steering geometry-Camber, Caster, King pin inclination, Included angle, Toe-in and Toe-out, Wheel alignment, Slip angle, Under steer & over steer, Types and working of power steering (Numerical).
- **Content Delivery Methods:**
 1. Chalk and Board
 2. Demonstrations
 3. PPT and Videos

UNIT 6. Braking System:

06

- **Prerequisite: Knowledge of Materials, Friction, Theory of machines**

- **Objectives:**

- 1. To understand various Braking systems**
- 2. To understand braking force, stopping distance, dynamic load calculations**

- **Outcomes:**

After completing this unit,

1. Students get basic knowledge of various Braking systems
2. Students are able to do braking force, stopping distance, dynamic load calculations

Unit Content: Requirements and Function of automotive brake system, Classification of brakes, Drum & Disc brakes. Hydraulic & Air brake systems. Power brakes, Anti-lock braking, Calculation of braking force required, stopping distance and dynamic weight transfer.(Numerical)

- **Content Delivery Methods:** 1. Chalk and Board

2. Demonstrations
3. PPT and Videos

UNIT 7. Suspension Systems: 04

- **Prerequisite: Knowledge of Materials, springs, Machine design.**

- **Objectives:**

1. To understand various Suspension systems
2. To understand Hotchkiss and Toque tube drive

- **Outcomes:**

After completing this unit, student will be having basic knowledge of

1. Various Suspension systems
2. Reaction members, Hotchkiss and Toque tube drive

Unit Content: Suspension requirements, Sprung and Un sprung mass, Types of automotive suspension systems- Conventional and Independent, Types of springs-Leaf spring and coil springs, Shock absorber, Reaction members-Radius rod, Stabilizer bar, Air suspension system. Hotchkiss and Toque tube drive

- **Content Delivery Methods:** 1. Chalk and Board

2. Demonstrations

3. PPT and Videos

8. Modern Trends:

04

- **Prerequisite: Basic Knowledge of Electrical and Electronics**

- **Objectives:**

1. To understand various Electronic control modules, sensors and Actuators
2. To understand Recent trends in Vehicles, safety devices

- **Outcomes:**

After completing this unit, student will be having basic knowledge of

1. Various Electronic control modules, sensors and Actuators
2. Recent trends in Vehicles, safety devices

Unit Content: Engine electronic control modules, Introduction to Sensors and actuators used in automobile controls, Hybrid vehicles, Electrical vehicle layouts, solar vehicles, safety devices, fuel cells.

- **Content Delivery Methods:**
 1. Chalk and Board
 2. Demonstrations
 3. PPT and Videos
- **Term Work:**
 Minimum six experiments from Group A and two experiment from Group B are to be performed
 - **Group A.**
 1. Study and demonstration of four wheeler chassis layout.
 2. Study and Demonstration of working of automobile clutches.
 3. Study and demonstration of synchromesh gearbox.
 4. Study and demonstration of final drive and differential.
 5. Study and demonstration of working Hydraulic braking system.
 6. Study and demonstration of steering gear boxes.
 7. Study and demonstration of suspension systems used in four-wheeler.
 8. Study and demonstration of battery and electrical starting system
 9. Study and demonstration of (a) Electric horn. (b) Electric fuel Gauge.
 (c) Flasher unit. (d) Wiper circuit
 - **Group B.**
 1. Demonstration of wheel balancing and wheel alignment.
 2. Visit to servicing station for study of vehicle maintenance, repairs and report.
 3. A case study presentation and report covering recent trends in automobiles.

Text Books:

1. Kripal Singh - Automobile Engineering – Standard publisher.
2. Automobile Mechanics -N. K. Giri
3. Automobile Electrical Equipment -P. S. Kohali

Reference Books:

1. K. Newton and W. Seeds, T.K. Garrett, Motor Vehicle, Elsevier publications
2. Hans Hermann Braess, Ulrich Seiffen, handbook of Automotive Engineering, SAE Publications
3. William H. Crouse. Automotive Mechanics - Tata McGraw Hill Publishing House
4. Joseph Heitner, Automotive Mechanics -C.B.S Publishers And Distributors
5. SAE Manuals and Standard
8. Narang G. B. S - Automobile Engineering - S. Chand and Company Ltd.

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

B.E. (Mechanical Engineering) Semester-I.

ME416 Project Work –I

Teaching Scheme
Practical – 04 Hour/week, 02 Credit

Examination Scheme
ICA- 50 Marks

Course

Objectives:

1. Application of the knowledge gained to practical situations.
2. Develop the technical problem solving ability.

Course Outcomes:

After completing Project Work –I, students will be able to;

1. Analyze the Project Problem with schematic diagram
2. Write mathematical model of the Project Problem

Guidelines for Project content & Mark Distribution:

	Marks
a. Work diary and weekly reporting	20
b. Synopsis	10
c. Progress report submission and presentation	20

Project Term Work:

The term work under project submitted by students shall include:

- a. Work diary and weekly reporting:

Work Diary maintained by group and countersigned by the guide weekly. The contents of work diary shall reflect the efforts taken by project group for

1. Searching suitable project work
2. Brief report, preferably on Journals/ research or conference papers/ books or literature surveyed to select and bring out the project.
3. Brief report of feasibility studies carried to implement the conclusion.
4. Proposed diagram/ Design calculations, etc.

- b. Synopsis:

The group should submit the synopsis (of 4-5 pages) in following form.

1. Title of Project
2. Names of Students
3. Name of Guide
4. Proposed work (Must indicate the scope of the work & weekly plan up to March end)
5. Approximate Expenditure (if any)

The synopsis shall be signed by each student in the group, approved by the guide and

Endorsed by the Head of the Department

Note:- 1. The project group should consist not more than four students.

- c. Progress report submission and presentation:

The group has to give a power point presentation in front of the faculty of department on the progress completed till end of first semester along with the progress report.

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

B.E. (Mechanical Engineering) Semester-I

ME417 Industrial Training

Teaching Scheme

Lectures – 1 Hour/week 1Credits

Practical – Hour/week, - Credit

Examination Scheme

ESE- OE-25 Marks

ISE – Marks

ICA- 50 Marks

Course Introduction:

Industrial training is must for a fresher. Students know the theoretical knowledge but practical application of same in industry need to be understand. Students should understand working of industry, machinery, quality process, manufacturing process etc for which training is important. Student has to undergo a training of Two weeks at core Mechanical Industry either in summer vacation after second year Part – I or Third year Part - I or after Third year Part - I, i. e in winter vacation. This will help student to understand industrial culture, working, role of an engineering etc.

Course Prerequisite:

1. Student must be aware of different manufacturing processes.
2. Student must be aware of things to be observed in industry.
3. Student should know basics of different material handling systems, design, materials

Course Objectives: During this course, student is expected to

1. Be aware of Industrial culture & Organizational setup.
2. Be aware about technical report writing.

Course Outcomes: At the end of this course, student will be able to

1. Understand the Industrial culture & Organizational setup.
2. Write technical report and give presentation.
3. Correlate theoretical knowledge with the actual in Industry
4. Responsibility and role of engineer in Industry

Procedure for Assessment of Industrial Training done by student

- Every student should do Industrial Training of minimum Two Weeks.
- Student should prepare a report of training done in a prescribed format before end of Part I Semester of BE. (along with a certificate from the concerned industry)
- Format of the report will be decided by the concerned guide.
- The report shall be comprehensive and presented in duplicate, typed on a standard A4 size sheet and bound.
- Every student should give presentation to project guide on industrial Training Report.
- The University oral examination will be based on the term work.

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

B.E. (Mechanical Engineering) Semester- II

ME424 (C) Free Elective-II

Plastic Engineering

Teaching Scheme

Lectures – 3 Hours/week, 3 Credits

Practical – 1 Hour/week, 1 Credit

Examination Scheme

ESE- 70 Marks

ISE – 30 Marks

ISA- 25 Marks

OE- 25 Marks

Course Introduction: During this course, student is exposed to following knowledge-

1. Study of extraction, manufacturing of plastic and classification.
2. Also study of various properties of plastic materials, comparative study of the plastics on the basis of parameters like structure, cost and processing time etc.
3. Study and Comparison of the different processes on the basis of parameters like cost and processing time etc.
4. Design of plastic part and molds, correct selection & design leads to compact & less cost of systems. Design & development, for an optimum process of a given job / component in a given situation.

Course Prerequisite: For this course, student is expected to have-

Knowledge of Engineering Chemistry and Polymers.

Knowledge of Basic Manufacturing Process.

Basic knowledge of welding processes

Basic Design Knowledge

Course Objectives: During this course, student is expected to

1. To understand the mechanism of polymerization, techniques of polymerization
2. To provide the depth knowledge about different kinds of plastic materials based on their Structure and properties.
3. To make the students familiar about processing of plastics and use it for different applications.
4. To provide the knowledge of part design as well mould design for different molding processes.

Course Outcomes: At the end of this course, student will be able to

1. Select the plastic materials for particular end user application
2. Predict the structure and properties of different kind of plastic material
3. Know the processing of different plastic material based on the end user requirement.
4. Part design as well mould design for different moulding processes.

Section I

Unit 1– Introduction to Plastics	No of lectures – 4
----------------------------------	--------------------

- **Prerequisite:** Knowledge of Engineering Chemistry and Polymers.
- **Objectives:**
 1. To study characteristics and classification of Plastics.
 2. To study different methods of testing for plastics.
 3. To study the principles of various Polymerization methods.
- **Outcomes:**

After completing this unit, student will be able to

 1. Understand the characteristics and classification of Plastics
 2. Select the suitable testing methods for particular type of plastic.
 3. Apply the principle on various Polymerization methods.
- **Unit Content:**

Definition and Classification of Plastic Materials, Properties of plastics, applications, Testing methods for plastics, additives in plastics, Monomers & Polymers, Polymerization - Types of Polymerization.
- **Content Delivery Methods:** Board, animations, videos, Chalk and talk

Unit 2– Processing of Plastics	No of lectures – 6
--------------------------------	--------------------

- **Prerequisite:** Knowledge of Basic Manufacturing Process.
- **Objectives:**
 1. To study characteristics and classification of Plastics Manufacturing Process.
 2. To study various methods of Plastics Manufacturing Process.
- **Outcomes:**

After completing this unit, student will be able to

 1. Understand the characteristics & classification of Plastics Manufacturing Process.
 2. Select the suitable methods of Manufacturing Process for particular type of plastic component.

- **Unit Content:**
Injection molding, Extrusion molding, sheet forming processes, calendaring, Blow molding, Processing of thermosetting plastics, compression molding, Transfer molding, rotational molding.
- **Content Delivery Methods:** Board, animations, videos, Chalk and talk

Unit 3– Welding of Plastics No of lectures – 4

- **Prerequisite:** Basic knowledge of welding processes.
- **Objectives:**
 1. To study characteristics and classification of Plastics Joining Process.
 2. To study various methods of Plastics Joining Process.
- **Outcomes:**
After completing this unit, student will be able to
 1. Understand the characteristics and classification of Plastics Joining Process.
 2. Select the suitable methods of Joining Process for particular plastic component.
- **Unit Content:**
Hot gas welding, hot tool welding, High frequency induction welding, laser welding, infrared welding, ultrasonic welding, friction welding
- **Content Delivery Methods:** Board, animations, videos, Chalk and talk

Unit 4– Design of Plastic Parts No of lectures – 6

- **Prerequisite:** Basic Design Knowledge.
- **Objectives:**
 1. To study characteristics of basic elements for proper *plastic part design*.
 2. To study design procedure of all basic elements for proper *plastic part design*.
- **Outcomes:**
After completing this unit, student will be able to
 1. Understand the characteristics of basic elements for proper *plastic part design*.
 2. Integrate the design of all basic elements for proper *plastic part design*.
- **Unit Content:**
Tolerances of molded plastics parts, allowances in plastics, Design corners, undercuts, curing time, ribs, minimum wall thickness, design of inserts, cores mold materials.
- **Content Delivery Methods:** Board, animations, videos, Chalk and talk

Section II

Unit 5– Design of compression and transfer molds No of lectures – 6

- **Prerequisite:** Knowledge of compression and transfer moulding process.
- **Objectives:**
After completing this unit, student will be able to
 1. To study types and main parts of compression and transfer moulds.
 2. To carry out design of compression mould.

- **Outcomes:**

After completing this unit, student will be able to

1. Explain types and main parts of compression and transfer moulds.
2. Design compression mould for thermoset plastic part.

- **Unit Content:**

a) Design and main parts of compression mould, standard insert mould body, design of loading chamber, design of punch, ejectors, stripper guided pin.

b) Technology of transfer mould, types, main parts, automation in transfer mould.

- **Content Delivery Methods:** Board, animations, videos, Chalk and talk

Unit 6– Injection Mould Design

No of lectures – 6

- **Prerequisite:** Knowledge of Injection moulding process.

- **Objectives:**

After completing this unit, student will be able to

1. To study types and main parts of Injection mould.
2. To study Feed system, Temperature control system and Ejection System for Injection moulding.
3. To carry out design of injection mould.

- **Outcomes:**

After completing this unit, student will be able to

1. Explain types and main parts of Injection mould.
2. Explain Feed system, Temperature control system and Ejection System for Injection moulding.
3. Design Injection mould for a thermoplastic part.

- **Unit Content:**

Injection mould design, Single, multi cavity, semi-automatic and automatic moulds. Types of injection mould, detailed structure and working. Feed system, Temperature control system, Ejection System, application.

- **Content Delivery Methods:** Board, animations, videos, Chalk and talk

Unit 7– Cooling of plastic injection mould

No of lectures – 5

- **Prerequisite:** of coolants used for mould cooling and concept of curing time.

- **Objectives:**

After completing this unit, student will be able to

1. To study the heat quantity dissipated with cooling, cooling time required and amount of coolant required to cool the injection mould.
2. To understand summary of dimension and construction of correct cooling system.

- **Outcomes:**

After completing this unit, student will be able to

1. Calculate the heat quantity dissipated with cooling, cooling time required and amount of coolant required to cool the injection mould.
2. Explain summary of dimension and construction of correct cooling system.

- **Unit Content:**

Determining the heat quantity dissipated with cooling, heat dissipation with natural cooling, mean temperature, thermal resistance of mold body, summary of dimension and construction of correct cooling system.

- **Content Delivery Methods:** Board, animations, videos, Chalk and talk

Unit 8– Introduction of advanced Plastics

No of lectures – 3

- **Prerequisite:** Knowledge of thermoplastic and thermosetting plastic materials and their basic applications.

- **Objectives:**

After completing this unit, student will be able to

1. To study the concept of composite plastics, polymer degradation and biodegradable plastics.
2. To study advanced application of plastics in various fields.

- **Outcomes:**

After completing this unit, student will be able to

1. Explain the concept of composite plastics, polymer degradation and biodegradable plastics.
2. Explain advanced application of plastics in various fields

- **Unit Content:**

Introduction to composite plastics, Introduction of polymer degradation and biodegradable plastics, advanced application like Agriculture, Packaging, Building, Transport, Electrical, Electronics, Medical and Furniture

- **Content Delivery Methods:** Board, animations, videos, Chalk and talk

- **Term Work:**

1. Introduction to plastic material and processes	2 Turns
2. Injection mould design for simple component	2 Turns
3. Design of Blow Mould	2 Turns
4. Design of Compression mould	2 Turns
5. Case study for mould manufacturing	2 Turns
6. Visit to Plastic industry (Thermo sets & Thermo Plasts)	

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

B.E. (Mechanical Engineering) Semester-I.

ME425 Project Work -II

Teaching Scheme

Practical – 04 Hour/week, 02 Credit

Examination Scheme

Oral Exam –100 Marks

ICA- 100 Marks

Course Objectives:

1. Manufacturing/modeling the project work.
2. Analyzing/comparing/evaluating the result of the project work.

Course Outcomes:

After completing Project Work –I, students will be able to;

1. Present the work in the Journal/conference/workshop
2. Apply for patent/IPR

Guidelines for Project contents & mark distribution:

a) Work diary and weekly reporting:	20
b) Project Report	:
c) Presentation	:

Project Report:

Project report should be of 25 to 50 pages (More pages can be used if needed). For Standardization of the project reports the following format should be strictly followed.

1. Page size: Trimmed A4
2. Top Margin: 1.00 Inches
3. Bottom Margin: 1.32 Inches
4. Left Margin: 1.5 Inches
5. Right Margin: 1.0 Inches
6. Para Text: Times New Roman 12 point font
7. Line Spacing: 1.5 Lines
8. Page Numbers: Right aligned at footer, font 12 point Times New Roman
9. Headings: New Times Roman, 14 point, Boldface
10. Certificate:

All students should attach standard format of Certificate as described by the Department. Certificate should be awarded to batch and not individual student. Certificate should have signatures of Guide, Principal, and External Examiner. Entire Report has to be segmented chapter wise as per the requirement.

11. Index of Report:

- i) Title Sheet
- ii) Certificate from Guide/ College
- iii) Acknowledgement
- iv) Abstract (Brief content of the work)
- v) List of Figures
- vi) List of Table

1. Introduction (History, Importance of Project Area, Problem identification, Objective of the Project)

2. Literature Review
3. Design/ Experimentation/ Fabrication/ Production/ Actual work carried out for the same.
4. Observation/ Analysis/ Findings/Results
5. Discussion on Results and Conclusion

References:

12. References or Bibliography: References should have the following format

For Books: "Title of Book"; Authors; Publisher; Edition;

For Papers: Authors, Year of Publication, "Title of Paper"; Conference Details/ General Details; Page No.

b) Presentation:

The group has to prepare a power point presentation on project report, project and present it in front of the faculty of department along with the demonstration of the project.

One copy of the report should be submitted to Institute/ Department, One copy to Guide and one copy should remain with each student of the project group. (Sample Format for Project Work Diary):

Project Progress Sheet

Activity Week: Date from..... to.....

Description of the Work Performed by the student:

(Literature Survey /Design/ Drawings /Purchase/ Manufacturing / Testing/Data Collection/Analysis/Algorithm/Flowchart/Simulation)

.....

Space for Drawings:

Constraint / Problem Found:

.....
.....
.....

Activity to be carried out in next week:

.....
.....
.....

Remarks by the Guide/ Co-Guide:

.....
.....
.....

Date: Sign of Guide/Co-Guide:

